Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach

Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2025-01, Vol.21 (1), p.e1012683
Hauptverfasser: Ali, Obaï Bin Ka'b, Vidal, Alexandre, Grova, Christophe, Benali, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e1012683
container_title PLoS computational biology
container_volume 21
creator Ali, Obaï Bin Ka'b
Vidal, Alexandre
Grova, Christophe
Benali, Habib
description Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.
doi_str_mv 10.1371/journal.pcbi.1012683
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3cd5d5f6bd3b498c8ecced515159288e</doaj_id><sourcerecordid>3155358004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3053-a6da01b96829504080b629de80eb6bb198169de57e83f7d41be0854b68f3945b3</originalsourceid><addsrcrecordid>eNpVkU2PFCEQhonRuB_6D4zh6GVGGBoavJjNrK6bbOJFrxI-qmcYu6GF7p3sv5dxxs1uOPACVW8V9SD0jpIlZS39uEtzjqZfjs6GJSV0JSR7gc4p52zRMi5fPtFn6KKUHSFVKvEanTElSaNW8hz9ug6mT5sZ8ABua2IoQ8EWpj1AxKZMObmHKThsoscR5pxqySqmfcq_yyd8hffb1MPCZhMiHpKHvg9xg8045mTc9g161Zm-wNvTfol-fv3yY_1tcff95nZ9dbdwjNQejfCGUKuEXClOGiKJFSvlQRKwwlqqJBX1yFuQrGt9Qy0QyRsrZMdUwy27RLdHX5_MTo85DCY_6GSC_neR8kabXP_Rg2bOc887YT2zjZJOgnPgOa2rTkRC9fp89BpnO4B3EKds-memz19i2OpNuteUtoww2VSHDyeHnP7MUCY9hOLqaEyENBfNDmC4JOQQ2hxDXU6lZOge61CiD5z1ibM-cNYnzjXt_dMeH5P-g2V_ATNhqWc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155358004</pqid></control><display><type>article</type><title>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ali, Obaï Bin Ka'b ; Vidal, Alexandre ; Grova, Christophe ; Benali, Habib</creator><creatorcontrib>Ali, Obaï Bin Ka'b ; Vidal, Alexandre ; Grova, Christophe ; Benali, Habib</creatorcontrib><description>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012683</identifier><identifier>PMID: 39804928</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Astrocytes - metabolism ; Astrocytes - physiology ; Biology and Life Sciences ; Brain - physiology ; Cell Communication - physiology ; Computational Biology ; Computer and Information Sciences ; Computer Simulation ; Humans ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Research and Analysis Methods ; Synaptic Transmission - physiology</subject><ispartof>PLoS computational biology, 2025-01, Vol.21 (1), p.e1012683</ispartof><rights>Copyright: © 2025 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2025 Ali et al 2025 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3053-a6da01b96829504080b629de80eb6bb198169de57e83f7d41be0854b68f3945b3</cites><orcidid>0000-0003-1830-5569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730384/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730384/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39804928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Obaï Bin Ka'b</creatorcontrib><creatorcontrib>Vidal, Alexandre</creatorcontrib><creatorcontrib>Grova, Christophe</creatorcontrib><creatorcontrib>Benali, Habib</creatorcontrib><title>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</description><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - physiology</subject><subject>Biology and Life Sciences</subject><subject>Brain - physiology</subject><subject>Cell Communication - physiology</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Research and Analysis Methods</subject><subject>Synaptic Transmission - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU2PFCEQhonRuB_6D4zh6GVGGBoavJjNrK6bbOJFrxI-qmcYu6GF7p3sv5dxxs1uOPACVW8V9SD0jpIlZS39uEtzjqZfjs6GJSV0JSR7gc4p52zRMi5fPtFn6KKUHSFVKvEanTElSaNW8hz9ug6mT5sZ8ABua2IoQ8EWpj1AxKZMObmHKThsoscR5pxqySqmfcq_yyd8hffb1MPCZhMiHpKHvg9xg8045mTc9g161Zm-wNvTfol-fv3yY_1tcff95nZ9dbdwjNQejfCGUKuEXClOGiKJFSvlQRKwwlqqJBX1yFuQrGt9Qy0QyRsrZMdUwy27RLdHX5_MTo85DCY_6GSC_neR8kabXP_Rg2bOc887YT2zjZJOgnPgOa2rTkRC9fp89BpnO4B3EKds-memz19i2OpNuteUtoww2VSHDyeHnP7MUCY9hOLqaEyENBfNDmC4JOQQ2hxDXU6lZOge61CiD5z1ibM-cNYnzjXt_dMeH5P-g2V_ATNhqWc</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ali, Obaï Bin Ka'b</creator><creator>Vidal, Alexandre</creator><creator>Grova, Christophe</creator><creator>Benali, Habib</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1830-5569</orcidid></search><sort><creationdate>20250101</creationdate><title>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</title><author>Ali, Obaï Bin Ka'b ; Vidal, Alexandre ; Grova, Christophe ; Benali, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3053-a6da01b96829504080b629de80eb6bb198169de57e83f7d41be0854b68f3945b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - physiology</topic><topic>Biology and Life Sciences</topic><topic>Brain - physiology</topic><topic>Cell Communication - physiology</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Research and Analysis Methods</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Obaï Bin Ka'b</creatorcontrib><creatorcontrib>Vidal, Alexandre</creatorcontrib><creatorcontrib>Grova, Christophe</creatorcontrib><creatorcontrib>Benali, Habib</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Obaï Bin Ka'b</au><au>Vidal, Alexandre</au><au>Grova, Christophe</au><au>Benali, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>21</volume><issue>1</issue><spage>e1012683</spage><pages>e1012683-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39804928</pmid><doi>10.1371/journal.pcbi.1012683</doi><orcidid>https://orcid.org/0000-0003-1830-5569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2025-01, Vol.21 (1), p.e1012683
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730384
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Animals
Astrocytes - metabolism
Astrocytes - physiology
Biology and Life Sciences
Brain - physiology
Cell Communication - physiology
Computational Biology
Computer and Information Sciences
Computer Simulation
Humans
Models, Neurological
Nerve Net - physiology
Neurons - physiology
Research and Analysis Methods
Synaptic Transmission - physiology
title Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dialogue%20mechanisms%20between%20astrocytic%20and%20neuronal%20networks:%20A%20whole-brain%20modelling%20approach&rft.jtitle=PLoS%20computational%20biology&rft.au=Ali,%20Oba%C3%AF%20Bin%20Ka'b&rft.date=2025-01-01&rft.volume=21&rft.issue=1&rft.spage=e1012683&rft.pages=e1012683-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012683&rft_dat=%3Cproquest_doaj_%3E3155358004%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155358004&rft_id=info:pmid/39804928&rft_doaj_id=oai_doaj_org_article_3cd5d5f6bd3b498c8ecced515159288e&rfr_iscdi=true