Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on n...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2025-01, Vol.21 (1), p.e1012683 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e1012683 |
container_title | PLoS computational biology |
container_volume | 21 |
creator | Ali, Obaï Bin Ka'b Vidal, Alexandre Grova, Christophe Benali, Habib |
description | Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states. |
doi_str_mv | 10.1371/journal.pcbi.1012683 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3cd5d5f6bd3b498c8ecced515159288e</doaj_id><sourcerecordid>3155358004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3053-a6da01b96829504080b629de80eb6bb198169de57e83f7d41be0854b68f3945b3</originalsourceid><addsrcrecordid>eNpVkU2PFCEQhonRuB_6D4zh6GVGGBoavJjNrK6bbOJFrxI-qmcYu6GF7p3sv5dxxs1uOPACVW8V9SD0jpIlZS39uEtzjqZfjs6GJSV0JSR7gc4p52zRMi5fPtFn6KKUHSFVKvEanTElSaNW8hz9ug6mT5sZ8ABua2IoQ8EWpj1AxKZMObmHKThsoscR5pxqySqmfcq_yyd8hffb1MPCZhMiHpKHvg9xg8045mTc9g161Zm-wNvTfol-fv3yY_1tcff95nZ9dbdwjNQejfCGUKuEXClOGiKJFSvlQRKwwlqqJBX1yFuQrGt9Qy0QyRsrZMdUwy27RLdHX5_MTo85DCY_6GSC_neR8kabXP_Rg2bOc887YT2zjZJOgnPgOa2rTkRC9fp89BpnO4B3EKds-memz19i2OpNuteUtoww2VSHDyeHnP7MUCY9hOLqaEyENBfNDmC4JOQQ2hxDXU6lZOge61CiD5z1ibM-cNYnzjXt_dMeH5P-g2V_ATNhqWc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155358004</pqid></control><display><type>article</type><title>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ali, Obaï Bin Ka'b ; Vidal, Alexandre ; Grova, Christophe ; Benali, Habib</creator><creatorcontrib>Ali, Obaï Bin Ka'b ; Vidal, Alexandre ; Grova, Christophe ; Benali, Habib</creatorcontrib><description>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012683</identifier><identifier>PMID: 39804928</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Astrocytes - metabolism ; Astrocytes - physiology ; Biology and Life Sciences ; Brain - physiology ; Cell Communication - physiology ; Computational Biology ; Computer and Information Sciences ; Computer Simulation ; Humans ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Research and Analysis Methods ; Synaptic Transmission - physiology</subject><ispartof>PLoS computational biology, 2025-01, Vol.21 (1), p.e1012683</ispartof><rights>Copyright: © 2025 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2025 Ali et al 2025 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3053-a6da01b96829504080b629de80eb6bb198169de57e83f7d41be0854b68f3945b3</cites><orcidid>0000-0003-1830-5569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730384/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730384/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39804928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Obaï Bin Ka'b</creatorcontrib><creatorcontrib>Vidal, Alexandre</creatorcontrib><creatorcontrib>Grova, Christophe</creatorcontrib><creatorcontrib>Benali, Habib</creatorcontrib><title>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</description><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - physiology</subject><subject>Biology and Life Sciences</subject><subject>Brain - physiology</subject><subject>Cell Communication - physiology</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Research and Analysis Methods</subject><subject>Synaptic Transmission - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU2PFCEQhonRuB_6D4zh6GVGGBoavJjNrK6bbOJFrxI-qmcYu6GF7p3sv5dxxs1uOPACVW8V9SD0jpIlZS39uEtzjqZfjs6GJSV0JSR7gc4p52zRMi5fPtFn6KKUHSFVKvEanTElSaNW8hz9ug6mT5sZ8ABua2IoQ8EWpj1AxKZMObmHKThsoscR5pxqySqmfcq_yyd8hffb1MPCZhMiHpKHvg9xg8045mTc9g161Zm-wNvTfol-fv3yY_1tcff95nZ9dbdwjNQejfCGUKuEXClOGiKJFSvlQRKwwlqqJBX1yFuQrGt9Qy0QyRsrZMdUwy27RLdHX5_MTo85DCY_6GSC_neR8kabXP_Rg2bOc887YT2zjZJOgnPgOa2rTkRC9fp89BpnO4B3EKds-memz19i2OpNuteUtoww2VSHDyeHnP7MUCY9hOLqaEyENBfNDmC4JOQQ2hxDXU6lZOge61CiD5z1ibM-cNYnzjXt_dMeH5P-g2V_ATNhqWc</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ali, Obaï Bin Ka'b</creator><creator>Vidal, Alexandre</creator><creator>Grova, Christophe</creator><creator>Benali, Habib</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1830-5569</orcidid></search><sort><creationdate>20250101</creationdate><title>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</title><author>Ali, Obaï Bin Ka'b ; Vidal, Alexandre ; Grova, Christophe ; Benali, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3053-a6da01b96829504080b629de80eb6bb198169de57e83f7d41be0854b68f3945b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - physiology</topic><topic>Biology and Life Sciences</topic><topic>Brain - physiology</topic><topic>Cell Communication - physiology</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Research and Analysis Methods</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Obaï Bin Ka'b</creatorcontrib><creatorcontrib>Vidal, Alexandre</creatorcontrib><creatorcontrib>Grova, Christophe</creatorcontrib><creatorcontrib>Benali, Habib</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Obaï Bin Ka'b</au><au>Vidal, Alexandre</au><au>Grova, Christophe</au><au>Benali, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>21</volume><issue>1</issue><spage>e1012683</spage><pages>e1012683-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39804928</pmid><doi>10.1371/journal.pcbi.1012683</doi><orcidid>https://orcid.org/0000-0003-1830-5569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2025-01, Vol.21 (1), p.e1012683 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730384 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Animals Astrocytes - metabolism Astrocytes - physiology Biology and Life Sciences Brain - physiology Cell Communication - physiology Computational Biology Computer and Information Sciences Computer Simulation Humans Models, Neurological Nerve Net - physiology Neurons - physiology Research and Analysis Methods Synaptic Transmission - physiology |
title | Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dialogue%20mechanisms%20between%20astrocytic%20and%20neuronal%20networks:%20A%20whole-brain%20modelling%20approach&rft.jtitle=PLoS%20computational%20biology&rft.au=Ali,%20Oba%C3%AF%20Bin%20Ka'b&rft.date=2025-01-01&rft.volume=21&rft.issue=1&rft.spage=e1012683&rft.pages=e1012683-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012683&rft_dat=%3Cproquest_doaj_%3E3155358004%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155358004&rft_id=info:pmid/39804928&rft_doaj_id=oai_doaj_org_article_3cd5d5f6bd3b498c8ecced515159288e&rfr_iscdi=true |