Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates
Recent research has shown the potential of polyhydroxyalkanoates (PHAs), particularly poly(3-hydroxybutyrate) (P3HB), to form nonwoven structures with fine fiber diameter distributions ranging from 2.5 µm to 20 µm during the meltblow process. The shortcomings of existing fabrics of this type include...
Gespeichert in:
Veröffentlicht in: | Polymers 2024-12, Vol.17 (1), p.51 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Polymers |
container_volume | 17 |
creator | Hiller, Tim Gutbrod, Frederik Bonten, Louisa Vocht, Marc Philip Azimian, Mehdi Resch, Julia Bonten, Christian Winnacker, Malte |
description | Recent research has shown the potential of polyhydroxyalkanoates (PHAs), particularly poly(3-hydroxybutyrate) (P3HB), to form nonwoven structures with fine fiber diameter distributions ranging from 2.5 µm to 20 µm during the meltblow process. The shortcomings of existing fabrics of this type include high brittleness, low elongation at break (max. 3%), and a lack of flexibility. Furthermore, the high melt adhesion and the special crystallization kinetics of PHAs have commonly been regarded as constraints in filament and nonwoven processing so far. However, these two properties have now been used to elaborate a three-dimensional fiber arrangement on a matrix, resulting in the creation of dimensionally and temperature-stable "nonwoven-parts". Moreover, this study investigated the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), revealing a similar processability to P3HB and PHBV in the meltblow process. A significant increase in the (peak load) elongation in the machine direction was observed, reaching values between 5% and 10%, while the tensile strength retained unaltered. The addition of the bio-based plasticizer acetyltributylcitrate (ATBC) to PHBH resulted on an increase in elongation up to 15%. The three-dimensional fabric structure of PHBH exhibited complete resilience to compression, a property that differentiates it from both P3HB and PHBV. However, the addition of the plasticizer to P3HB did not lead to any improvements. This interesting array of properties results in moderate air permeability and hydrophobicity, leading to impermeability to water. |
doi_str_mv | 10.3390/polym17010051 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11722760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823336370</galeid><sourcerecordid>A823336370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-dd328b183a02ab156ba305ef28f2bf02a9c6bccdeb1f2204b79839b1d203e873</originalsourceid><addsrcrecordid>eNpdkk1vFSEUhidGY5vapVtD4saFU4EznyvTD60mjZrc65oAc7iXOgNTmKnerb9cxlubVlhwcnjelwOcLHvJ6AlAS9-Nvt8NrKaM0pI9yQ45rSEvoKJPH8QH2XGM1zSNoqwqVj_PDqCt27Io4TD7fYkOg5ysd8QbcmZ9fiYjdm_JaitHzIl0HVnjMC7QHDBfTVL1SNbbgJhf2AFdTFrZky_e_fS36MhqCrNe2Ei-R-s25MIagwHdRL6lere7LvhfO9n_kM7LCeOL7JmRfcTju_UoW3_8sD7_lF99vfx8fnqVayjYlHcd8EaxBiTlUrGyUhJoiYY3hiuTcq2ulNYdKmY4p4Wq2wZaxTpOAZsajrL3e9txVgN2OtUTZC_GYAcZdsJLKx7vOLsVG38rGKs5ryuaHN7cOQR_M2OcxGCjxr6XDv0cBbCyKCi0JUvo6__Qaz-H9Ex_KaigaGAxPNlTG9mjsM74dLBOs8PBau_Q2JQ_bThAktSLIN8LdPAxBjT35TMqlo4Qjzoi8a8e3vme_vf_8Adw6bR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153634830</pqid></control><display><type>article</type><title>Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hiller, Tim ; Gutbrod, Frederik ; Bonten, Louisa ; Vocht, Marc Philip ; Azimian, Mehdi ; Resch, Julia ; Bonten, Christian ; Winnacker, Malte</creator><creatorcontrib>Hiller, Tim ; Gutbrod, Frederik ; Bonten, Louisa ; Vocht, Marc Philip ; Azimian, Mehdi ; Resch, Julia ; Bonten, Christian ; Winnacker, Malte</creatorcontrib><description>Recent research has shown the potential of polyhydroxyalkanoates (PHAs), particularly poly(3-hydroxybutyrate) (P3HB), to form nonwoven structures with fine fiber diameter distributions ranging from 2.5 µm to 20 µm during the meltblow process. The shortcomings of existing fabrics of this type include high brittleness, low elongation at break (max. 3%), and a lack of flexibility. Furthermore, the high melt adhesion and the special crystallization kinetics of PHAs have commonly been regarded as constraints in filament and nonwoven processing so far. However, these two properties have now been used to elaborate a three-dimensional fiber arrangement on a matrix, resulting in the creation of dimensionally and temperature-stable "nonwoven-parts". Moreover, this study investigated the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), revealing a similar processability to P3HB and PHBV in the meltblow process. A significant increase in the (peak load) elongation in the machine direction was observed, reaching values between 5% and 10%, while the tensile strength retained unaltered. The addition of the bio-based plasticizer acetyltributylcitrate (ATBC) to PHBH resulted on an increase in elongation up to 15%. The three-dimensional fabric structure of PHBH exhibited complete resilience to compression, a property that differentiates it from both P3HB and PHBV. However, the addition of the plasticizer to P3HB did not lead to any improvements. This interesting array of properties results in moderate air permeability and hydrophobicity, leading to impermeability to water.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym17010051</identifier><identifier>PMID: 39795453</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bioplastics ; Compressive strength ; Copolymers ; Crystallization ; Elongated structure ; Fabric structures ; Flexibility ; Hydrophobicity ; Nonwoven fabrics ; Peak load ; Permeability ; Plasticizers ; Polyhydroxyalkanoates ; Polymers ; Reference materials ; Temperature ; Tensile strength ; Usability</subject><ispartof>Polymers, 2024-12, Vol.17 (1), p.51</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-dd328b183a02ab156ba305ef28f2bf02a9c6bccdeb1f2204b79839b1d203e873</cites><orcidid>0000-0001-5300-920X ; 0000-0002-2709-783X ; 0009-0008-9639-9947 ; 0000-0001-7003-2671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39795453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiller, Tim</creatorcontrib><creatorcontrib>Gutbrod, Frederik</creatorcontrib><creatorcontrib>Bonten, Louisa</creatorcontrib><creatorcontrib>Vocht, Marc Philip</creatorcontrib><creatorcontrib>Azimian, Mehdi</creatorcontrib><creatorcontrib>Resch, Julia</creatorcontrib><creatorcontrib>Bonten, Christian</creatorcontrib><creatorcontrib>Winnacker, Malte</creatorcontrib><title>Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Recent research has shown the potential of polyhydroxyalkanoates (PHAs), particularly poly(3-hydroxybutyrate) (P3HB), to form nonwoven structures with fine fiber diameter distributions ranging from 2.5 µm to 20 µm during the meltblow process. The shortcomings of existing fabrics of this type include high brittleness, low elongation at break (max. 3%), and a lack of flexibility. Furthermore, the high melt adhesion and the special crystallization kinetics of PHAs have commonly been regarded as constraints in filament and nonwoven processing so far. However, these two properties have now been used to elaborate a three-dimensional fiber arrangement on a matrix, resulting in the creation of dimensionally and temperature-stable "nonwoven-parts". Moreover, this study investigated the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), revealing a similar processability to P3HB and PHBV in the meltblow process. A significant increase in the (peak load) elongation in the machine direction was observed, reaching values between 5% and 10%, while the tensile strength retained unaltered. The addition of the bio-based plasticizer acetyltributylcitrate (ATBC) to PHBH resulted on an increase in elongation up to 15%. The three-dimensional fabric structure of PHBH exhibited complete resilience to compression, a property that differentiates it from both P3HB and PHBV. However, the addition of the plasticizer to P3HB did not lead to any improvements. This interesting array of properties results in moderate air permeability and hydrophobicity, leading to impermeability to water.</description><subject>Bioplastics</subject><subject>Compressive strength</subject><subject>Copolymers</subject><subject>Crystallization</subject><subject>Elongated structure</subject><subject>Fabric structures</subject><subject>Flexibility</subject><subject>Hydrophobicity</subject><subject>Nonwoven fabrics</subject><subject>Peak load</subject><subject>Permeability</subject><subject>Plasticizers</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymers</subject><subject>Reference materials</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Usability</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkk1vFSEUhidGY5vapVtD4saFU4EznyvTD60mjZrc65oAc7iXOgNTmKnerb9cxlubVlhwcnjelwOcLHvJ6AlAS9-Nvt8NrKaM0pI9yQ45rSEvoKJPH8QH2XGM1zSNoqwqVj_PDqCt27Io4TD7fYkOg5ysd8QbcmZ9fiYjdm_JaitHzIl0HVnjMC7QHDBfTVL1SNbbgJhf2AFdTFrZky_e_fS36MhqCrNe2Ei-R-s25MIagwHdRL6lere7LvhfO9n_kM7LCeOL7JmRfcTju_UoW3_8sD7_lF99vfx8fnqVayjYlHcd8EaxBiTlUrGyUhJoiYY3hiuTcq2ulNYdKmY4p4Wq2wZaxTpOAZsajrL3e9txVgN2OtUTZC_GYAcZdsJLKx7vOLsVG38rGKs5ryuaHN7cOQR_M2OcxGCjxr6XDv0cBbCyKCi0JUvo6__Qaz-H9Ex_KaigaGAxPNlTG9mjsM74dLBOs8PBau_Q2JQ_bThAktSLIN8LdPAxBjT35TMqlo4Qjzoi8a8e3vme_vf_8Adw6bR0</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Hiller, Tim</creator><creator>Gutbrod, Frederik</creator><creator>Bonten, Louisa</creator><creator>Vocht, Marc Philip</creator><creator>Azimian, Mehdi</creator><creator>Resch, Julia</creator><creator>Bonten, Christian</creator><creator>Winnacker, Malte</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5300-920X</orcidid><orcidid>https://orcid.org/0000-0002-2709-783X</orcidid><orcidid>https://orcid.org/0009-0008-9639-9947</orcidid><orcidid>https://orcid.org/0000-0001-7003-2671</orcidid></search><sort><creationdate>20241228</creationdate><title>Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates</title><author>Hiller, Tim ; Gutbrod, Frederik ; Bonten, Louisa ; Vocht, Marc Philip ; Azimian, Mehdi ; Resch, Julia ; Bonten, Christian ; Winnacker, Malte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-dd328b183a02ab156ba305ef28f2bf02a9c6bccdeb1f2204b79839b1d203e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioplastics</topic><topic>Compressive strength</topic><topic>Copolymers</topic><topic>Crystallization</topic><topic>Elongated structure</topic><topic>Fabric structures</topic><topic>Flexibility</topic><topic>Hydrophobicity</topic><topic>Nonwoven fabrics</topic><topic>Peak load</topic><topic>Permeability</topic><topic>Plasticizers</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymers</topic><topic>Reference materials</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiller, Tim</creatorcontrib><creatorcontrib>Gutbrod, Frederik</creatorcontrib><creatorcontrib>Bonten, Louisa</creatorcontrib><creatorcontrib>Vocht, Marc Philip</creatorcontrib><creatorcontrib>Azimian, Mehdi</creatorcontrib><creatorcontrib>Resch, Julia</creatorcontrib><creatorcontrib>Bonten, Christian</creatorcontrib><creatorcontrib>Winnacker, Malte</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiller, Tim</au><au>Gutbrod, Frederik</au><au>Bonten, Louisa</au><au>Vocht, Marc Philip</au><au>Azimian, Mehdi</au><au>Resch, Julia</au><au>Bonten, Christian</au><au>Winnacker, Malte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-12-28</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>51</spage><pages>51-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Recent research has shown the potential of polyhydroxyalkanoates (PHAs), particularly poly(3-hydroxybutyrate) (P3HB), to form nonwoven structures with fine fiber diameter distributions ranging from 2.5 µm to 20 µm during the meltblow process. The shortcomings of existing fabrics of this type include high brittleness, low elongation at break (max. 3%), and a lack of flexibility. Furthermore, the high melt adhesion and the special crystallization kinetics of PHAs have commonly been regarded as constraints in filament and nonwoven processing so far. However, these two properties have now been used to elaborate a three-dimensional fiber arrangement on a matrix, resulting in the creation of dimensionally and temperature-stable "nonwoven-parts". Moreover, this study investigated the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), revealing a similar processability to P3HB and PHBV in the meltblow process. A significant increase in the (peak load) elongation in the machine direction was observed, reaching values between 5% and 10%, while the tensile strength retained unaltered. The addition of the bio-based plasticizer acetyltributylcitrate (ATBC) to PHBH resulted on an increase in elongation up to 15%. The three-dimensional fabric structure of PHBH exhibited complete resilience to compression, a property that differentiates it from both P3HB and PHBV. However, the addition of the plasticizer to P3HB did not lead to any improvements. This interesting array of properties results in moderate air permeability and hydrophobicity, leading to impermeability to water.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39795453</pmid><doi>10.3390/polym17010051</doi><orcidid>https://orcid.org/0000-0001-5300-920X</orcidid><orcidid>https://orcid.org/0000-0002-2709-783X</orcidid><orcidid>https://orcid.org/0009-0008-9639-9947</orcidid><orcidid>https://orcid.org/0000-0001-7003-2671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-12, Vol.17 (1), p.51 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11722760 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Bioplastics Compressive strength Copolymers Crystallization Elongated structure Fabric structures Flexibility Hydrophobicity Nonwoven fabrics Peak load Permeability Plasticizers Polyhydroxyalkanoates Polymers Reference materials Temperature Tensile strength Usability |
title | Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Bio-Based,%20Shape-%20and%20Temperature-Stable%20Three-Dimensional%20Nonwoven%20Structures%20Using%20Different%20Polyhydroxyalkanoates&rft.jtitle=Polymers&rft.au=Hiller,%20Tim&rft.date=2024-12-28&rft.volume=17&rft.issue=1&rft.spage=51&rft.pages=51-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym17010051&rft_dat=%3Cgale_pubme%3EA823336370%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153634830&rft_id=info:pmid/39795453&rft_galeid=A823336370&rfr_iscdi=true |