Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys

Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue lif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-12, Vol.18 (1), p.11
Hauptverfasser: Wu, Hao, Wang, Anbin, Gan, Zhiqiang, Gan, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11
container_title Materials
container_volume 18
creator Wu, Hao
Wang, Anbin
Gan, Zhiqiang
Gan, Lei
description Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.
doi_str_mv 10.3390/ma18010011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11721828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154405333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-e264aa38513f1ae499ebbd076292372e6cf8b3fd2eb1d66356d2caa3454bc3253</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEgmlw4QegSFwQUiFfTZsTGoMB0hAc4Bylqbtl6pqRtEj795TvgS-25MevbL8IHVJyxrki50tDc0IJoXQLDahSMqFKiO2Neg8dxLggfXBOc6Z20R5XmUplKgfI3ASzmjtrajwB03YB8Ng3sQ2dbZ1vkksTocRXACs8BRMa18zwvS-hxpUPeGJaN-sAT10F-DFA6T6msK_w6B6P6tqv4z7aqUwd4eArD9Hz5PppfJtMH27uxqNpYpkkbQJMCmN4nlJeUQNCKSiKkmSSKcYzBtJWecGrkkFBSyl5Kktm-wGRisJylvIhuvjUXXXFEkoLTRtMrVfBLU1Ya2-c_ttp3FzP_KumNGP9X_Je4eRLIfiXDmKrly5aqGvTgO-i5jQVgqS8jyE6_ocufBea_r53imciyyTtqdNPygYfY4DqZxtK9Lt7-te9Hj7a3P8H_faKvwEWL5RW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153747761</pqid></control><display><type>article</type><title>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Wu, Hao ; Wang, Anbin ; Gan, Zhiqiang ; Gan, Lei</creator><creatorcontrib>Wu, Hao ; Wang, Anbin ; Gan, Zhiqiang ; Gan, Lei</creatorcontrib><description>Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma18010011</identifier><identifier>PMID: 39795656</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Additive manufacturing ; Artificial neural networks ; Correlation coefficients ; Critical components ; Deep learning ; Fatigue failure ; Fatigue life ; Life prediction ; Machine learning ; Metal fatigue ; Neural networks ; Powder beds</subject><ispartof>Materials, 2024-12, Vol.18 (1), p.11</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-e264aa38513f1ae499ebbd076292372e6cf8b3fd2eb1d66356d2caa3454bc3253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721828/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721828/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39795656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Wang, Anbin</creatorcontrib><creatorcontrib>Gan, Zhiqiang</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><title>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.</description><subject>Accuracy</subject><subject>Additive manufacturing</subject><subject>Artificial neural networks</subject><subject>Correlation coefficients</subject><subject>Critical components</subject><subject>Deep learning</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Life prediction</subject><subject>Machine learning</subject><subject>Metal fatigue</subject><subject>Neural networks</subject><subject>Powder beds</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1PwzAMhiMEgmlw4QegSFwQUiFfTZsTGoMB0hAc4Bylqbtl6pqRtEj795TvgS-25MevbL8IHVJyxrki50tDc0IJoXQLDahSMqFKiO2Neg8dxLggfXBOc6Z20R5XmUplKgfI3ASzmjtrajwB03YB8Ng3sQ2dbZ1vkksTocRXACs8BRMa18zwvS-hxpUPeGJaN-sAT10F-DFA6T6msK_w6B6P6tqv4z7aqUwd4eArD9Hz5PppfJtMH27uxqNpYpkkbQJMCmN4nlJeUQNCKSiKkmSSKcYzBtJWecGrkkFBSyl5Kktm-wGRisJylvIhuvjUXXXFEkoLTRtMrVfBLU1Ya2-c_ttp3FzP_KumNGP9X_Je4eRLIfiXDmKrly5aqGvTgO-i5jQVgqS8jyE6_ocufBea_r53imciyyTtqdNPygYfY4DqZxtK9Lt7-te9Hj7a3P8H_faKvwEWL5RW</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Wu, Hao</creator><creator>Wang, Anbin</creator><creator>Gan, Zhiqiang</creator><creator>Gan, Lei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241224</creationdate><title>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</title><author>Wu, Hao ; Wang, Anbin ; Gan, Zhiqiang ; Gan, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-e264aa38513f1ae499ebbd076292372e6cf8b3fd2eb1d66356d2caa3454bc3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Additive manufacturing</topic><topic>Artificial neural networks</topic><topic>Correlation coefficients</topic><topic>Critical components</topic><topic>Deep learning</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Life prediction</topic><topic>Machine learning</topic><topic>Metal fatigue</topic><topic>Neural networks</topic><topic>Powder beds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Wang, Anbin</creatorcontrib><creatorcontrib>Gan, Zhiqiang</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao</au><au>Wang, Anbin</au><au>Gan, Zhiqiang</au><au>Gan, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>11</spage><pages>11-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39795656</pmid><doi>10.3390/ma18010011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-12, Vol.18 (1), p.11
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11721828
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Accuracy
Additive manufacturing
Artificial neural networks
Correlation coefficients
Critical components
Deep learning
Fatigue failure
Fatigue life
Life prediction
Machine learning
Metal fatigue
Neural networks
Powder beds
title Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphical%20Feature%20Construction-Based%20Deep%20Learning%20Model%20for%20Fatigue%20Life%20Prediction%20of%20AM%20Alloys&rft.jtitle=Materials&rft.au=Wu,%20Hao&rft.date=2024-12-24&rft.volume=18&rft.issue=1&rft.spage=11&rft.pages=11-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma18010011&rft_dat=%3Cproquest_pubme%3E3154405333%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153747761&rft_id=info:pmid/39795656&rfr_iscdi=true