Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys
Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue lif...
Gespeichert in:
Veröffentlicht in: | Materials 2024-12, Vol.18 (1), p.11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Materials |
container_volume | 18 |
creator | Wu, Hao Wang, Anbin Gan, Zhiqiang Gan, Lei |
description | Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models. |
doi_str_mv | 10.3390/ma18010011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11721828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154405333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-e264aa38513f1ae499ebbd076292372e6cf8b3fd2eb1d66356d2caa3454bc3253</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEgmlw4QegSFwQUiFfTZsTGoMB0hAc4Bylqbtl6pqRtEj795TvgS-25MevbL8IHVJyxrki50tDc0IJoXQLDahSMqFKiO2Neg8dxLggfXBOc6Z20R5XmUplKgfI3ASzmjtrajwB03YB8Ng3sQ2dbZ1vkksTocRXACs8BRMa18zwvS-hxpUPeGJaN-sAT10F-DFA6T6msK_w6B6P6tqv4z7aqUwd4eArD9Hz5PppfJtMH27uxqNpYpkkbQJMCmN4nlJeUQNCKSiKkmSSKcYzBtJWecGrkkFBSyl5Kktm-wGRisJylvIhuvjUXXXFEkoLTRtMrVfBLU1Ya2-c_ttp3FzP_KumNGP9X_Je4eRLIfiXDmKrly5aqGvTgO-i5jQVgqS8jyE6_ocufBea_r53imciyyTtqdNPygYfY4DqZxtK9Lt7-te9Hj7a3P8H_faKvwEWL5RW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153747761</pqid></control><display><type>article</type><title>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Wu, Hao ; Wang, Anbin ; Gan, Zhiqiang ; Gan, Lei</creator><creatorcontrib>Wu, Hao ; Wang, Anbin ; Gan, Zhiqiang ; Gan, Lei</creatorcontrib><description>Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma18010011</identifier><identifier>PMID: 39795656</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Additive manufacturing ; Artificial neural networks ; Correlation coefficients ; Critical components ; Deep learning ; Fatigue failure ; Fatigue life ; Life prediction ; Machine learning ; Metal fatigue ; Neural networks ; Powder beds</subject><ispartof>Materials, 2024-12, Vol.18 (1), p.11</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-e264aa38513f1ae499ebbd076292372e6cf8b3fd2eb1d66356d2caa3454bc3253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721828/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721828/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39795656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Wang, Anbin</creatorcontrib><creatorcontrib>Gan, Zhiqiang</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><title>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.</description><subject>Accuracy</subject><subject>Additive manufacturing</subject><subject>Artificial neural networks</subject><subject>Correlation coefficients</subject><subject>Critical components</subject><subject>Deep learning</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Life prediction</subject><subject>Machine learning</subject><subject>Metal fatigue</subject><subject>Neural networks</subject><subject>Powder beds</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1PwzAMhiMEgmlw4QegSFwQUiFfTZsTGoMB0hAc4Bylqbtl6pqRtEj795TvgS-25MevbL8IHVJyxrki50tDc0IJoXQLDahSMqFKiO2Neg8dxLggfXBOc6Z20R5XmUplKgfI3ASzmjtrajwB03YB8Ng3sQ2dbZ1vkksTocRXACs8BRMa18zwvS-hxpUPeGJaN-sAT10F-DFA6T6msK_w6B6P6tqv4z7aqUwd4eArD9Hz5PppfJtMH27uxqNpYpkkbQJMCmN4nlJeUQNCKSiKkmSSKcYzBtJWecGrkkFBSyl5Kktm-wGRisJylvIhuvjUXXXFEkoLTRtMrVfBLU1Ya2-c_ttp3FzP_KumNGP9X_Je4eRLIfiXDmKrly5aqGvTgO-i5jQVgqS8jyE6_ocufBea_r53imciyyTtqdNPygYfY4DqZxtK9Lt7-te9Hj7a3P8H_faKvwEWL5RW</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Wu, Hao</creator><creator>Wang, Anbin</creator><creator>Gan, Zhiqiang</creator><creator>Gan, Lei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241224</creationdate><title>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</title><author>Wu, Hao ; Wang, Anbin ; Gan, Zhiqiang ; Gan, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-e264aa38513f1ae499ebbd076292372e6cf8b3fd2eb1d66356d2caa3454bc3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Additive manufacturing</topic><topic>Artificial neural networks</topic><topic>Correlation coefficients</topic><topic>Critical components</topic><topic>Deep learning</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Life prediction</topic><topic>Machine learning</topic><topic>Metal fatigue</topic><topic>Neural networks</topic><topic>Powder beds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Wang, Anbin</creatorcontrib><creatorcontrib>Gan, Zhiqiang</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao</au><au>Wang, Anbin</au><au>Gan, Zhiqiang</au><au>Gan, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>11</spage><pages>11-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest. To cure the deficiency, a novel ML model based upon convolutional neural networks is developed, where numeric features are transformed into graphical ones by introducing two information enrichment operations, namely, Shapley Additive Explanations and Pearson correlation coefficient analysis. Additionally, the attention mechanism is introduced to prioritize important regions in the image-based inputs. Extensive validations using experimental results of two laser powder bed fusion-fabricated metals demonstrate that the proposed model possesses better predictive accuracy than conventional ML models.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39795656</pmid><doi>10.3390/ma18010011</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-12, Vol.18 (1), p.11 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11721828 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Accuracy Additive manufacturing Artificial neural networks Correlation coefficients Critical components Deep learning Fatigue failure Fatigue life Life prediction Machine learning Metal fatigue Neural networks Powder beds |
title | Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphical%20Feature%20Construction-Based%20Deep%20Learning%20Model%20for%20Fatigue%20Life%20Prediction%20of%20AM%20Alloys&rft.jtitle=Materials&rft.au=Wu,%20Hao&rft.date=2024-12-24&rft.volume=18&rft.issue=1&rft.spage=11&rft.pages=11-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma18010011&rft_dat=%3Cproquest_pubme%3E3154405333%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153747761&rft_id=info:pmid/39795656&rfr_iscdi=true |