Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-12, Vol.26 (1), p.36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | International journal of molecular sciences |
container_volume | 26 |
creator | Cabrera-Quiñones, Neyra Citlali López-Méndez, Luis José Cruz-Hernández, Carlos Guadarrama, Patricia |
description | Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine. |
doi_str_mv | 10.3390/ijms26010036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11719597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154404918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2131-dd3dbf8ed27043941dfaf690f527b6a5f166c411e66ed4b1d65e67da228f5fa53</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIg_oqJElGoos-D3jCkWjQJACKRJqy-NH4sVjL_ZMxP4DfjZeEqKFypbv53PvuQeAVxi9o1Si92E9VSIQRoiKJ-AQM0JWCInu6d79ABzVukaIUMLlc3BAZSd5L_kh-DXEYL7D4dZNoc5lC3WFOsEz74MJLs3wOuc45p_Q5wKHvGxiSDfwanYlGB3jFp6HZF1xFn7J0Zkl6gKvtnV2U4VzhpfjrEOCp_ZOJ7OD9O6njvWP3led8uRs65TcC_DMt3f38uE8Bt8-nl0P56uLy0-fh9OLlSGY4pW11I6-d5Z0iFHJsPXaC4k8J90oNPdYCMMwdkI4y0ZsBXeis5qQ3nOvOT0GH-51N8vYepvmseioNiVMumxV1kH9W0nhVt3kO4VxhyWXXVN4-6BQ8o_F1Vm11RkXo04uL1VRzBlDTOK-oW_-Q9d5Kan521G044j1rFEn95Qpudbi_OM0GKldxmo_44a_3nfwCP8Nlf4GgPWlHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153750484</pqid></control><display><type>article</type><title>Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cabrera-Quiñones, Neyra Citlali ; López-Méndez, Luis José ; Cruz-Hernández, Carlos ; Guadarrama, Patricia</creator><creatorcontrib>Cabrera-Quiñones, Neyra Citlali ; López-Méndez, Luis José ; Cruz-Hernández, Carlos ; Guadarrama, Patricia</creatorcontrib><description>Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms26010036</identifier><identifier>PMID: 39795895</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Azide ; Azides - chemistry ; Chemical bonds ; Chemical reactions ; Chemistry ; Click Chemistry - methods ; Copper ; Cycloaddition Reaction - methods ; Cyclodextrins - chemistry ; Fullerenes - chemistry ; Humans ; Liver cancer ; Nanomedicine - methods ; Peptides ; Polymerization ; Polymers ; Polymers - chemistry ; Review ; Toxicity</subject><ispartof>International journal of molecular sciences, 2024-12, Vol.26 (1), p.36</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2131-dd3dbf8ed27043941dfaf690f527b6a5f166c411e66ed4b1d65e67da228f5fa53</cites><orcidid>0000-0001-5596-2846 ; 0000-0002-4142-119X ; 0000-0002-5222-3885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719597/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719597/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39795895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabrera-Quiñones, Neyra Citlali</creatorcontrib><creatorcontrib>López-Méndez, Luis José</creatorcontrib><creatorcontrib>Cruz-Hernández, Carlos</creatorcontrib><creatorcontrib>Guadarrama, Patricia</creatorcontrib><title>Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.</description><subject>Azide</subject><subject>Azides - chemistry</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Click Chemistry - methods</subject><subject>Copper</subject><subject>Cycloaddition Reaction - methods</subject><subject>Cyclodextrins - chemistry</subject><subject>Fullerenes - chemistry</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Nanomedicine - methods</subject><subject>Peptides</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Review</subject><subject>Toxicity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkTtvFDEUhS0EIg_oqJElGoos-D3jCkWjQJACKRJqy-NH4sVjL_ZMxP4DfjZeEqKFypbv53PvuQeAVxi9o1Si92E9VSIQRoiKJ-AQM0JWCInu6d79ABzVukaIUMLlc3BAZSd5L_kh-DXEYL7D4dZNoc5lC3WFOsEz74MJLs3wOuc45p_Q5wKHvGxiSDfwanYlGB3jFp6HZF1xFn7J0Zkl6gKvtnV2U4VzhpfjrEOCp_ZOJ7OD9O6njvWP3led8uRs65TcC_DMt3f38uE8Bt8-nl0P56uLy0-fh9OLlSGY4pW11I6-d5Z0iFHJsPXaC4k8J90oNPdYCMMwdkI4y0ZsBXeis5qQ3nOvOT0GH-51N8vYepvmseioNiVMumxV1kH9W0nhVt3kO4VxhyWXXVN4-6BQ8o_F1Vm11RkXo04uL1VRzBlDTOK-oW_-Q9d5Kan521G044j1rFEn95Qpudbi_OM0GKldxmo_44a_3nfwCP8Nlf4GgPWlHA</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Cabrera-Quiñones, Neyra Citlali</creator><creator>López-Méndez, Luis José</creator><creator>Cruz-Hernández, Carlos</creator><creator>Guadarrama, Patricia</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5596-2846</orcidid><orcidid>https://orcid.org/0000-0002-4142-119X</orcidid><orcidid>https://orcid.org/0000-0002-5222-3885</orcidid></search><sort><creationdate>20241224</creationdate><title>Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine</title><author>Cabrera-Quiñones, Neyra Citlali ; López-Méndez, Luis José ; Cruz-Hernández, Carlos ; Guadarrama, Patricia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2131-dd3dbf8ed27043941dfaf690f527b6a5f166c411e66ed4b1d65e67da228f5fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Azide</topic><topic>Azides - chemistry</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Click Chemistry - methods</topic><topic>Copper</topic><topic>Cycloaddition Reaction - methods</topic><topic>Cyclodextrins - chemistry</topic><topic>Fullerenes - chemistry</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Nanomedicine - methods</topic><topic>Peptides</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Review</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera-Quiñones, Neyra Citlali</creatorcontrib><creatorcontrib>López-Méndez, Luis José</creatorcontrib><creatorcontrib>Cruz-Hernández, Carlos</creatorcontrib><creatorcontrib>Guadarrama, Patricia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera-Quiñones, Neyra Citlali</au><au>López-Méndez, Luis José</au><au>Cruz-Hernández, Carlos</au><au>Guadarrama, Patricia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><spage>36</spage><pages>36-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39795895</pmid><doi>10.3390/ijms26010036</doi><orcidid>https://orcid.org/0000-0001-5596-2846</orcidid><orcidid>https://orcid.org/0000-0002-4142-119X</orcidid><orcidid>https://orcid.org/0000-0002-5222-3885</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-12, Vol.26 (1), p.36 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11719597 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Azide Azides - chemistry Chemical bonds Chemical reactions Chemistry Click Chemistry - methods Copper Cycloaddition Reaction - methods Cyclodextrins - chemistry Fullerenes - chemistry Humans Liver cancer Nanomedicine - methods Peptides Polymerization Polymers Polymers - chemistry Review Toxicity |
title | Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Click%20Chemistry%20as%20an%20Efficient%20Toolbox%20for%20Coupling%20Sterically%20Hindered%20Molecular%20Systems%20to%20Obtain%20Advanced%20Materials%20for%20Nanomedicine&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Cabrera-Qui%C3%B1ones,%20Neyra%20Citlali&rft.date=2024-12-24&rft.volume=26&rft.issue=1&rft.spage=36&rft.pages=36-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms26010036&rft_dat=%3Cproquest_pubme%3E3154404918%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153750484&rft_id=info:pmid/39795895&rfr_iscdi=true |