SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin

Previous work has suggested that products of the Saccharomyces cerevisiae S ilent I nformation R egulator ( SIR ) genes form a complex with histones, nucleated by cis ‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 1999-12, Vol.18 (24), p.7041-7055
Hauptverfasser: Sekinger, E.A, Gross, D.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7055
container_issue 24
container_start_page 7041
container_title The EMBO journal
container_volume 18
creator Sekinger, E.A
Gross, D.S
description Previous work has suggested that products of the Saccharomyces cerevisiae S ilent I nformation R egulator ( SIR ) genes form a complex with histones, nucleated by cis ‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of HSP82 , a transcriptionally potent, stress‐inducible gene. We find that HSP82 is efficiently silenced in a SIR ‐dependent fashion, but only when HMRE mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for SIR repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.
doi_str_mv 10.1093/emboj/18.24.7041
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>372986631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6045-76b5c7e3bfa2fac17eee65273581d3525290cd44a215f8e994ba117e291569ca3</originalsourceid><addsrcrecordid>eNqFks1vEzEQxVcIRNPCnRNYHLht6vH6Y82hUqhKadWCIIl6tJzNbOI0WQd705L_HoetqoCEevLBv_f8Zp6z7A3QPlBdHONq4hfHUPYZ7yvK4VnWAy5pzqgSz7MeZRJyDqU-yA5jXFBKRangZXYAVFJIt73MDi9-kIDrgDE63xBfE0u2aGNL5mhbEue-uiUzbPAjGQ-GxDZTMhqMBqT2vl0H17SRrDFElwT3rp27JulaDL6aB7-yrWteZS9qu4z4-uE8ysafz0anX_Krb-cXp4OrvJKUi1zJiagUFpPastpWoBBRCqYKUcK0EEwwTasp55aBqEvUmk8sJIppEFJXtjjKTjrf9WaywmmFTRvs0qSMKxu2xltn_r5p3NzM_J1JLqCkSgYfHgyC_7nB2JqVixUul7ZBv4lG6pRFS_kkCIpLEIIl8P0_4MJvQpO2YECnkVIZOkG0g6rgYwxYP0YGanYtmz8tGygN42bXcpK83R91T9DVmgDdAfduidsnDc3Z9adLJTQDKpIWOm3c1TvDsBf6_4HyTpO-Af56fM-GW5MWq4S5-Xpubr5fXxaSC1Mk_l3H19YbOwsumvGQUSgo01xJxovf57PeAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195258719</pqid></control><display><type>article</type><title>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sekinger, E.A ; Gross, D.S</creator><creatorcontrib>Sekinger, E.A ; Gross, D.S</creatorcontrib><description>Previous work has suggested that products of the Saccharomyces cerevisiae S ilent I nformation R egulator ( SIR ) genes form a complex with histones, nucleated by cis ‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of HSP82 , a transcriptionally potent, stress‐inducible gene. We find that HSP82 is efficiently silenced in a SIR ‐dependent fashion, but only when HMRE mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for SIR repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.24.7041</identifier><identifier>PMID: 10601026</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>alleles ; binding proteins ; Binding Sites ; DNA Footprinting ; DNA, Fungal - chemistry ; DNA, Fungal - genetics ; DNA-Binding Proteins ; Fungal Proteins - metabolism ; gene expression ; Gene Silencing ; genes ; Genes, Fungal - physiology ; Genes, Mating Type, Fungal ; genetic regulation ; Genotype ; heat shock factor ; heat shock proteins ; Heat-Shock Proteins - genetics ; heterochromatin ; Heterochromatin - genetics ; Heterochromatin - physiology ; histones ; Histones - metabolism ; HMRE gene ; HSP82 gene ; HSP90 Heat-Shock Proteins ; mating-type silencers ; Promoter Regions, Genetic ; regulator genes ; regulatory sequences ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; silencers ; Silent Information Regulator ; silent information regulators ; SIR gene ; TATA Box ; TATA-binding protein ; Telomere - genetics ; Telomere - physiology ; Trans-Activators - metabolism ; transcription (genetics) ; transcription factors ; transcriptional activators ; transcriptional silencing ; Yeasts ; Zinc Fingers</subject><ispartof>The EMBO journal, 1999-12, Vol.18 (24), p.7041-7055</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Dec 15, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6045-76b5c7e3bfa2fac17eee65273581d3525290cd44a215f8e994ba117e291569ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171767/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171767/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10601026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekinger, E.A</creatorcontrib><creatorcontrib>Gross, D.S</creatorcontrib><title>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Previous work has suggested that products of the Saccharomyces cerevisiae S ilent I nformation R egulator ( SIR ) genes form a complex with histones, nucleated by cis ‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of HSP82 , a transcriptionally potent, stress‐inducible gene. We find that HSP82 is efficiently silenced in a SIR ‐dependent fashion, but only when HMRE mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for SIR repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.</description><subject>alleles</subject><subject>binding proteins</subject><subject>Binding Sites</subject><subject>DNA Footprinting</subject><subject>DNA, Fungal - chemistry</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-Binding Proteins</subject><subject>Fungal Proteins - metabolism</subject><subject>gene expression</subject><subject>Gene Silencing</subject><subject>genes</subject><subject>Genes, Fungal - physiology</subject><subject>Genes, Mating Type, Fungal</subject><subject>genetic regulation</subject><subject>Genotype</subject><subject>heat shock factor</subject><subject>heat shock proteins</subject><subject>Heat-Shock Proteins - genetics</subject><subject>heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - physiology</subject><subject>histones</subject><subject>Histones - metabolism</subject><subject>HMRE gene</subject><subject>HSP82 gene</subject><subject>HSP90 Heat-Shock Proteins</subject><subject>mating-type silencers</subject><subject>Promoter Regions, Genetic</subject><subject>regulator genes</subject><subject>regulatory sequences</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>silencers</subject><subject>Silent Information Regulator</subject><subject>silent information regulators</subject><subject>SIR gene</subject><subject>TATA Box</subject><subject>TATA-binding protein</subject><subject>Telomere - genetics</subject><subject>Telomere - physiology</subject><subject>Trans-Activators - metabolism</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>transcriptional activators</subject><subject>transcriptional silencing</subject><subject>Yeasts</subject><subject>Zinc Fingers</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1vEzEQxVcIRNPCnRNYHLht6vH6Y82hUqhKadWCIIl6tJzNbOI0WQd705L_HoetqoCEevLBv_f8Zp6z7A3QPlBdHONq4hfHUPYZ7yvK4VnWAy5pzqgSz7MeZRJyDqU-yA5jXFBKRangZXYAVFJIt73MDi9-kIDrgDE63xBfE0u2aGNL5mhbEue-uiUzbPAjGQ-GxDZTMhqMBqT2vl0H17SRrDFElwT3rp27JulaDL6aB7-yrWteZS9qu4z4-uE8ysafz0anX_Krb-cXp4OrvJKUi1zJiagUFpPastpWoBBRCqYKUcK0EEwwTasp55aBqEvUmk8sJIppEFJXtjjKTjrf9WaywmmFTRvs0qSMKxu2xltn_r5p3NzM_J1JLqCkSgYfHgyC_7nB2JqVixUul7ZBv4lG6pRFS_kkCIpLEIIl8P0_4MJvQpO2YECnkVIZOkG0g6rgYwxYP0YGanYtmz8tGygN42bXcpK83R91T9DVmgDdAfduidsnDc3Z9adLJTQDKpIWOm3c1TvDsBf6_4HyTpO-Af56fM-GW5MWq4S5-Xpubr5fXxaSC1Mk_l3H19YbOwsumvGQUSgo01xJxovf57PeAw</recordid><startdate>19991215</startdate><enddate>19991215</enddate><creator>Sekinger, E.A</creator><creator>Gross, D.S</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991215</creationdate><title>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</title><author>Sekinger, E.A ; Gross, D.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6045-76b5c7e3bfa2fac17eee65273581d3525290cd44a215f8e994ba117e291569ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>alleles</topic><topic>binding proteins</topic><topic>Binding Sites</topic><topic>DNA Footprinting</topic><topic>DNA, Fungal - chemistry</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-Binding Proteins</topic><topic>Fungal Proteins - metabolism</topic><topic>gene expression</topic><topic>Gene Silencing</topic><topic>genes</topic><topic>Genes, Fungal - physiology</topic><topic>Genes, Mating Type, Fungal</topic><topic>genetic regulation</topic><topic>Genotype</topic><topic>heat shock factor</topic><topic>heat shock proteins</topic><topic>Heat-Shock Proteins - genetics</topic><topic>heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - physiology</topic><topic>histones</topic><topic>Histones - metabolism</topic><topic>HMRE gene</topic><topic>HSP82 gene</topic><topic>HSP90 Heat-Shock Proteins</topic><topic>mating-type silencers</topic><topic>Promoter Regions, Genetic</topic><topic>regulator genes</topic><topic>regulatory sequences</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>silencers</topic><topic>Silent Information Regulator</topic><topic>silent information regulators</topic><topic>SIR gene</topic><topic>TATA Box</topic><topic>TATA-binding protein</topic><topic>Telomere - genetics</topic><topic>Telomere - physiology</topic><topic>Trans-Activators - metabolism</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>transcriptional activators</topic><topic>transcriptional silencing</topic><topic>Yeasts</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekinger, E.A</creatorcontrib><creatorcontrib>Gross, D.S</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekinger, E.A</au><au>Gross, D.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-12-15</date><risdate>1999</risdate><volume>18</volume><issue>24</issue><spage>7041</spage><epage>7055</epage><pages>7041-7055</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Previous work has suggested that products of the Saccharomyces cerevisiae S ilent I nformation R egulator ( SIR ) genes form a complex with histones, nucleated by cis ‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of HSP82 , a transcriptionally potent, stress‐inducible gene. We find that HSP82 is efficiently silenced in a SIR ‐dependent fashion, but only when HMRE mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for SIR repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10601026</pmid><doi>10.1093/emboj/18.24.7041</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1999-12, Vol.18 (24), p.7041-7055
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171767
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects alleles
binding proteins
Binding Sites
DNA Footprinting
DNA, Fungal - chemistry
DNA, Fungal - genetics
DNA-Binding Proteins
Fungal Proteins - metabolism
gene expression
Gene Silencing
genes
Genes, Fungal - physiology
Genes, Mating Type, Fungal
genetic regulation
Genotype
heat shock factor
heat shock proteins
Heat-Shock Proteins - genetics
heterochromatin
Heterochromatin - genetics
Heterochromatin - physiology
histones
Histones - metabolism
HMRE gene
HSP82 gene
HSP90 Heat-Shock Proteins
mating-type silencers
Promoter Regions, Genetic
regulator genes
regulatory sequences
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
silencers
Silent Information Regulator
silent information regulators
SIR gene
TATA Box
TATA-binding protein
Telomere - genetics
Telomere - physiology
Trans-Activators - metabolism
transcription (genetics)
transcription factors
transcriptional activators
transcriptional silencing
Yeasts
Zinc Fingers
title SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIR%20repression%20of%20a%20yeast%20heat%20shock%20gene:%20UAS%20and%20TATA%20footprints%20persist%20within%20heterochromatin&rft.jtitle=The%20EMBO%20journal&rft.au=Sekinger,%20E.A&rft.date=1999-12-15&rft.volume=18&rft.issue=24&rft.spage=7041&rft.epage=7055&rft.pages=7041-7055&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.24.7041&rft_dat=%3Cproquest_pubme%3E372986631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195258719&rft_id=info:pmid/10601026&rfr_iscdi=true