SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin
Previous work has suggested that products of the Saccharomyces cerevisiae S ilent I nformation R egulator ( SIR ) genes form a complex with histones, nucleated by cis ‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is g...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 1999-12, Vol.18 (24), p.7041-7055 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7055 |
---|---|
container_issue | 24 |
container_start_page | 7041 |
container_title | The EMBO journal |
container_volume | 18 |
creator | Sekinger, E.A Gross, D.S |
description | Previous work has suggested that products of the
Saccharomyces cerevisiae
S
ilent
I
nformation
R
egulator (
SIR
) genes form a complex with histones, nucleated by
cis
‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of
HSP82
, a transcriptionally potent, stress‐inducible gene. We find that
HSP82
is efficiently silenced in a
SIR
‐dependent fashion, but only when
HMRE
mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for
SIR
repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex. |
doi_str_mv | 10.1093/emboj/18.24.7041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>372986631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6045-76b5c7e3bfa2fac17eee65273581d3525290cd44a215f8e994ba117e291569ca3</originalsourceid><addsrcrecordid>eNqFks1vEzEQxVcIRNPCnRNYHLht6vH6Y82hUqhKadWCIIl6tJzNbOI0WQd705L_HoetqoCEevLBv_f8Zp6z7A3QPlBdHONq4hfHUPYZ7yvK4VnWAy5pzqgSz7MeZRJyDqU-yA5jXFBKRangZXYAVFJIt73MDi9-kIDrgDE63xBfE0u2aGNL5mhbEue-uiUzbPAjGQ-GxDZTMhqMBqT2vl0H17SRrDFElwT3rp27JulaDL6aB7-yrWteZS9qu4z4-uE8ysafz0anX_Krb-cXp4OrvJKUi1zJiagUFpPastpWoBBRCqYKUcK0EEwwTasp55aBqEvUmk8sJIppEFJXtjjKTjrf9WaywmmFTRvs0qSMKxu2xltn_r5p3NzM_J1JLqCkSgYfHgyC_7nB2JqVixUul7ZBv4lG6pRFS_kkCIpLEIIl8P0_4MJvQpO2YECnkVIZOkG0g6rgYwxYP0YGanYtmz8tGygN42bXcpK83R91T9DVmgDdAfduidsnDc3Z9adLJTQDKpIWOm3c1TvDsBf6_4HyTpO-Af56fM-GW5MWq4S5-Xpubr5fXxaSC1Mk_l3H19YbOwsumvGQUSgo01xJxovf57PeAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195258719</pqid></control><display><type>article</type><title>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sekinger, E.A ; Gross, D.S</creator><creatorcontrib>Sekinger, E.A ; Gross, D.S</creatorcontrib><description>Previous work has suggested that products of the
Saccharomyces cerevisiae
S
ilent
I
nformation
R
egulator (
SIR
) genes form a complex with histones, nucleated by
cis
‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of
HSP82
, a transcriptionally potent, stress‐inducible gene. We find that
HSP82
is efficiently silenced in a
SIR
‐dependent fashion, but only when
HMRE
mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for
SIR
repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.24.7041</identifier><identifier>PMID: 10601026</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>alleles ; binding proteins ; Binding Sites ; DNA Footprinting ; DNA, Fungal - chemistry ; DNA, Fungal - genetics ; DNA-Binding Proteins ; Fungal Proteins - metabolism ; gene expression ; Gene Silencing ; genes ; Genes, Fungal - physiology ; Genes, Mating Type, Fungal ; genetic regulation ; Genotype ; heat shock factor ; heat shock proteins ; Heat-Shock Proteins - genetics ; heterochromatin ; Heterochromatin - genetics ; Heterochromatin - physiology ; histones ; Histones - metabolism ; HMRE gene ; HSP82 gene ; HSP90 Heat-Shock Proteins ; mating-type silencers ; Promoter Regions, Genetic ; regulator genes ; regulatory sequences ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; silencers ; Silent Information Regulator ; silent information regulators ; SIR gene ; TATA Box ; TATA-binding protein ; Telomere - genetics ; Telomere - physiology ; Trans-Activators - metabolism ; transcription (genetics) ; transcription factors ; transcriptional activators ; transcriptional silencing ; Yeasts ; Zinc Fingers</subject><ispartof>The EMBO journal, 1999-12, Vol.18 (24), p.7041-7055</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Dec 15, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6045-76b5c7e3bfa2fac17eee65273581d3525290cd44a215f8e994ba117e291569ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171767/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171767/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10601026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekinger, E.A</creatorcontrib><creatorcontrib>Gross, D.S</creatorcontrib><title>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Previous work has suggested that products of the
Saccharomyces cerevisiae
S
ilent
I
nformation
R
egulator (
SIR
) genes form a complex with histones, nucleated by
cis
‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of
HSP82
, a transcriptionally potent, stress‐inducible gene. We find that
HSP82
is efficiently silenced in a
SIR
‐dependent fashion, but only when
HMRE
mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for
SIR
repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.</description><subject>alleles</subject><subject>binding proteins</subject><subject>Binding Sites</subject><subject>DNA Footprinting</subject><subject>DNA, Fungal - chemistry</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-Binding Proteins</subject><subject>Fungal Proteins - metabolism</subject><subject>gene expression</subject><subject>Gene Silencing</subject><subject>genes</subject><subject>Genes, Fungal - physiology</subject><subject>Genes, Mating Type, Fungal</subject><subject>genetic regulation</subject><subject>Genotype</subject><subject>heat shock factor</subject><subject>heat shock proteins</subject><subject>Heat-Shock Proteins - genetics</subject><subject>heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - physiology</subject><subject>histones</subject><subject>Histones - metabolism</subject><subject>HMRE gene</subject><subject>HSP82 gene</subject><subject>HSP90 Heat-Shock Proteins</subject><subject>mating-type silencers</subject><subject>Promoter Regions, Genetic</subject><subject>regulator genes</subject><subject>regulatory sequences</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>silencers</subject><subject>Silent Information Regulator</subject><subject>silent information regulators</subject><subject>SIR gene</subject><subject>TATA Box</subject><subject>TATA-binding protein</subject><subject>Telomere - genetics</subject><subject>Telomere - physiology</subject><subject>Trans-Activators - metabolism</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>transcriptional activators</subject><subject>transcriptional silencing</subject><subject>Yeasts</subject><subject>Zinc Fingers</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1vEzEQxVcIRNPCnRNYHLht6vH6Y82hUqhKadWCIIl6tJzNbOI0WQd705L_HoetqoCEevLBv_f8Zp6z7A3QPlBdHONq4hfHUPYZ7yvK4VnWAy5pzqgSz7MeZRJyDqU-yA5jXFBKRangZXYAVFJIt73MDi9-kIDrgDE63xBfE0u2aGNL5mhbEue-uiUzbPAjGQ-GxDZTMhqMBqT2vl0H17SRrDFElwT3rp27JulaDL6aB7-yrWteZS9qu4z4-uE8ysafz0anX_Krb-cXp4OrvJKUi1zJiagUFpPastpWoBBRCqYKUcK0EEwwTasp55aBqEvUmk8sJIppEFJXtjjKTjrf9WaywmmFTRvs0qSMKxu2xltn_r5p3NzM_J1JLqCkSgYfHgyC_7nB2JqVixUul7ZBv4lG6pRFS_kkCIpLEIIl8P0_4MJvQpO2YECnkVIZOkG0g6rgYwxYP0YGanYtmz8tGygN42bXcpK83R91T9DVmgDdAfduidsnDc3Z9adLJTQDKpIWOm3c1TvDsBf6_4HyTpO-Af56fM-GW5MWq4S5-Xpubr5fXxaSC1Mk_l3H19YbOwsumvGQUSgo01xJxovf57PeAw</recordid><startdate>19991215</startdate><enddate>19991215</enddate><creator>Sekinger, E.A</creator><creator>Gross, D.S</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991215</creationdate><title>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</title><author>Sekinger, E.A ; Gross, D.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6045-76b5c7e3bfa2fac17eee65273581d3525290cd44a215f8e994ba117e291569ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>alleles</topic><topic>binding proteins</topic><topic>Binding Sites</topic><topic>DNA Footprinting</topic><topic>DNA, Fungal - chemistry</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-Binding Proteins</topic><topic>Fungal Proteins - metabolism</topic><topic>gene expression</topic><topic>Gene Silencing</topic><topic>genes</topic><topic>Genes, Fungal - physiology</topic><topic>Genes, Mating Type, Fungal</topic><topic>genetic regulation</topic><topic>Genotype</topic><topic>heat shock factor</topic><topic>heat shock proteins</topic><topic>Heat-Shock Proteins - genetics</topic><topic>heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - physiology</topic><topic>histones</topic><topic>Histones - metabolism</topic><topic>HMRE gene</topic><topic>HSP82 gene</topic><topic>HSP90 Heat-Shock Proteins</topic><topic>mating-type silencers</topic><topic>Promoter Regions, Genetic</topic><topic>regulator genes</topic><topic>regulatory sequences</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>silencers</topic><topic>Silent Information Regulator</topic><topic>silent information regulators</topic><topic>SIR gene</topic><topic>TATA Box</topic><topic>TATA-binding protein</topic><topic>Telomere - genetics</topic><topic>Telomere - physiology</topic><topic>Trans-Activators - metabolism</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>transcriptional activators</topic><topic>transcriptional silencing</topic><topic>Yeasts</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekinger, E.A</creatorcontrib><creatorcontrib>Gross, D.S</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekinger, E.A</au><au>Gross, D.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-12-15</date><risdate>1999</risdate><volume>18</volume><issue>24</issue><spage>7041</spage><epage>7055</epage><pages>7041-7055</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Previous work has suggested that products of the
Saccharomyces cerevisiae
S
ilent
I
nformation
R
egulator (
SIR
) genes form a complex with histones, nucleated by
cis
‐acting silencers or telomeres, which represses transcription in a position‐dependent but sequence‐independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of
HSP82
, a transcriptionally potent, stress‐inducible gene. We find that
HSP82
is efficiently silenced in a
SIR
‐dependent fashion, but only when
HMRE
mating‐type silencers are configured both 5′ and 3′ of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA‐binding protein (TBP) are strengthened and broadened, while groove‐specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for
SIR
repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co‐existing heterochromatic complex.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10601026</pmid><doi>10.1093/emboj/18.24.7041</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 1999-12, Vol.18 (24), p.7041-7055 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171767 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | alleles binding proteins Binding Sites DNA Footprinting DNA, Fungal - chemistry DNA, Fungal - genetics DNA-Binding Proteins Fungal Proteins - metabolism gene expression Gene Silencing genes Genes, Fungal - physiology Genes, Mating Type, Fungal genetic regulation Genotype heat shock factor heat shock proteins Heat-Shock Proteins - genetics heterochromatin Heterochromatin - genetics Heterochromatin - physiology histones Histones - metabolism HMRE gene HSP82 gene HSP90 Heat-Shock Proteins mating-type silencers Promoter Regions, Genetic regulator genes regulatory sequences Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins silencers Silent Information Regulator silent information regulators SIR gene TATA Box TATA-binding protein Telomere - genetics Telomere - physiology Trans-Activators - metabolism transcription (genetics) transcription factors transcriptional activators transcriptional silencing Yeasts Zinc Fingers |
title | SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIR%20repression%20of%20a%20yeast%20heat%20shock%20gene:%20UAS%20and%20TATA%20footprints%20persist%20within%20heterochromatin&rft.jtitle=The%20EMBO%20journal&rft.au=Sekinger,%20E.A&rft.date=1999-12-15&rft.volume=18&rft.issue=24&rft.spage=7041&rft.epage=7055&rft.pages=7041-7055&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.24.7041&rft_dat=%3Cproquest_pubme%3E372986631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195258719&rft_id=info:pmid/10601026&rfr_iscdi=true |