An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus
Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin‐2 ( AQP2 ) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endo...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 1999-05, Vol.18 (9), p.2394-2400 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2400 |
---|---|
container_issue | 9 |
container_start_page | 2394 |
container_title | The EMBO journal |
container_volume | 18 |
creator | Kamsteeg, Erik-Jan Wormhoudt, Thera A.M. Rijss, Johan P.L. van Os, Carel H. Deen, Peter M.T. |
description | Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin‐2 (
AQP2
) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2‐E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild‐type AQP2 and AQP2‐E258K also formed homotetramers, whereas AQP2‐R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co‐injection, AQP2‐E258K, but not AQP2‐R187C, was able to heterotetramerize with wild‐type AQP2. Since an AQP monomer is the functional unit and AQP2‐E258K is a functional but misrouted water channel, heterotetramerization of AQP2‐E258K with wild‐type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the ‘loss‐of‐function’ phenotype is caused by an impaired routing rather than impaired function of the wild‐type protein. |
doi_str_mv | 10.1093/emboj/18.9.2394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17229774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5754-65505acdaf230fbb674aeb7eae23f51f4ebfbe793f39f74c3e2b49f3f34146a13</originalsourceid><addsrcrecordid>eNqFkk9v0zAYxiMEYmVw5oYiDtzS-m8cX5C2MQqlwAXE0XKSN61LYmd2Aisfgs-MS6apQ0I7WbZ_z-P3ff0kyXOM5hhJuoCudLsFLuZyTqhkD5IZZjnKCBL8YTJDJMcZw4U8SZ6EsEMI8ULgx8kJRoQUmLNZ8vvMpqbrtfFQp96Ng7Gb1DXpT9PW2bDvIdVXo-6dNzYjqW4G8OkAg9cdePNLD8bZyA7bVNs7ZDcO2g4pXPetNjakteuMPZxY6LfebcCaKq2NLmGAkEbC9KYew9PkUaPbAM9u1tPk69vLLxfvsvXn5fuLs3VWccFZlnOOuK5q3RCKmrLMBdNQCtBAaMNxw6BsShCSNlQ2glUUSMlkE7cszkdjepq8nnz7seygrsDGllrVe9Npv1dOG3X3xpqt2rgfCmOBKSHR4NWNgXdXI4RBdSZU0LbaghuDyqWgrJD8XhALQqQQLIIv_wF3bvQ2TkFhyeNPRiZCiwmqvAvBQ3NbMkbqkAj1NxEKF0qqQyKi4sVxp0f8FIEIFBMQvxz29_mpy4_nK8ElzvODFE3SEFV2A_6o5P-Wk00SEwa4vn1N--8qF1Rw9e3TUq0-vCnwarlWlP4BicPoHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195261743</pqid></control><display><type>article</type><title>An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Kamsteeg, Erik-Jan ; Wormhoudt, Thera A.M. ; Rijss, Johan P.L. ; van Os, Carel H. ; Deen, Peter M.T.</creator><creatorcontrib>Kamsteeg, Erik-Jan ; Wormhoudt, Thera A.M. ; Rijss, Johan P.L. ; van Os, Carel H. ; Deen, Peter M.T.</creatorcontrib><description>Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin‐2 (
AQP2
) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2‐E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild‐type AQP2 and AQP2‐E258K also formed homotetramers, whereas AQP2‐R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co‐injection, AQP2‐E258K, but not AQP2‐R187C, was able to heterotetramerize with wild‐type AQP2. Since an AQP monomer is the functional unit and AQP2‐E258K is a functional but misrouted water channel, heterotetramerization of AQP2‐E258K with wild‐type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the ‘loss‐of‐function’ phenotype is caused by an impaired routing rather than impaired function of the wild‐type protein.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.9.2394</identifier><identifier>PMID: 10228154</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Aquaporin 2 ; Aquaporin 6 ; Aquaporins - antagonists & inhibitors ; Aquaporins - genetics ; Aquaporins - metabolism ; Centrifugation ; Diabetes Insipidus, Nephrogenic - genetics ; Diabetes Insipidus, Nephrogenic - metabolism ; disease ; Humans ; Kidneys ; Models, Biological ; Mutation ; oligomerization ; Oocytes ; Protein Conformation ; recessive ; Recombinant Proteins - metabolism ; Water - metabolism ; Xenopus laevis</subject><ispartof>The EMBO journal, 1999-05, Vol.18 (9), p.2394-2400</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) May 04, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5754-65505acdaf230fbb674aeb7eae23f51f4ebfbe793f39f74c3e2b49f3f34146a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171322/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171322/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10228154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamsteeg, Erik-Jan</creatorcontrib><creatorcontrib>Wormhoudt, Thera A.M.</creatorcontrib><creatorcontrib>Rijss, Johan P.L.</creatorcontrib><creatorcontrib>van Os, Carel H.</creatorcontrib><creatorcontrib>Deen, Peter M.T.</creatorcontrib><title>An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin‐2 (
AQP2
) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2‐E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild‐type AQP2 and AQP2‐E258K also formed homotetramers, whereas AQP2‐R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co‐injection, AQP2‐E258K, but not AQP2‐R187C, was able to heterotetramerize with wild‐type AQP2. Since an AQP monomer is the functional unit and AQP2‐E258K is a functional but misrouted water channel, heterotetramerization of AQP2‐E258K with wild‐type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the ‘loss‐of‐function’ phenotype is caused by an impaired routing rather than impaired function of the wild‐type protein.</description><subject>Animals</subject><subject>Aquaporin 2</subject><subject>Aquaporin 6</subject><subject>Aquaporins - antagonists & inhibitors</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Centrifugation</subject><subject>Diabetes Insipidus, Nephrogenic - genetics</subject><subject>Diabetes Insipidus, Nephrogenic - metabolism</subject><subject>disease</subject><subject>Humans</subject><subject>Kidneys</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>oligomerization</subject><subject>Oocytes</subject><subject>Protein Conformation</subject><subject>recessive</subject><subject>Recombinant Proteins - metabolism</subject><subject>Water - metabolism</subject><subject>Xenopus laevis</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9v0zAYxiMEYmVw5oYiDtzS-m8cX5C2MQqlwAXE0XKSN61LYmd2Aisfgs-MS6apQ0I7WbZ_z-P3ff0kyXOM5hhJuoCudLsFLuZyTqhkD5IZZjnKCBL8YTJDJMcZw4U8SZ6EsEMI8ULgx8kJRoQUmLNZ8vvMpqbrtfFQp96Ng7Gb1DXpT9PW2bDvIdVXo-6dNzYjqW4G8OkAg9cdePNLD8bZyA7bVNs7ZDcO2g4pXPetNjakteuMPZxY6LfebcCaKq2NLmGAkEbC9KYew9PkUaPbAM9u1tPk69vLLxfvsvXn5fuLs3VWccFZlnOOuK5q3RCKmrLMBdNQCtBAaMNxw6BsShCSNlQ2glUUSMlkE7cszkdjepq8nnz7seygrsDGllrVe9Npv1dOG3X3xpqt2rgfCmOBKSHR4NWNgXdXI4RBdSZU0LbaghuDyqWgrJD8XhALQqQQLIIv_wF3bvQ2TkFhyeNPRiZCiwmqvAvBQ3NbMkbqkAj1NxEKF0qqQyKi4sVxp0f8FIEIFBMQvxz29_mpy4_nK8ElzvODFE3SEFV2A_6o5P-Wk00SEwa4vn1N--8qF1Rw9e3TUq0-vCnwarlWlP4BicPoHA</recordid><startdate>19990504</startdate><enddate>19990504</enddate><creator>Kamsteeg, Erik-Jan</creator><creator>Wormhoudt, Thera A.M.</creator><creator>Rijss, Johan P.L.</creator><creator>van Os, Carel H.</creator><creator>Deen, Peter M.T.</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990504</creationdate><title>An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus</title><author>Kamsteeg, Erik-Jan ; Wormhoudt, Thera A.M. ; Rijss, Johan P.L. ; van Os, Carel H. ; Deen, Peter M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5754-65505acdaf230fbb674aeb7eae23f51f4ebfbe793f39f74c3e2b49f3f34146a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Aquaporin 2</topic><topic>Aquaporin 6</topic><topic>Aquaporins - antagonists & inhibitors</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Centrifugation</topic><topic>Diabetes Insipidus, Nephrogenic - genetics</topic><topic>Diabetes Insipidus, Nephrogenic - metabolism</topic><topic>disease</topic><topic>Humans</topic><topic>Kidneys</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>oligomerization</topic><topic>Oocytes</topic><topic>Protein Conformation</topic><topic>recessive</topic><topic>Recombinant Proteins - metabolism</topic><topic>Water - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamsteeg, Erik-Jan</creatorcontrib><creatorcontrib>Wormhoudt, Thera A.M.</creatorcontrib><creatorcontrib>Rijss, Johan P.L.</creatorcontrib><creatorcontrib>van Os, Carel H.</creatorcontrib><creatorcontrib>Deen, Peter M.T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamsteeg, Erik-Jan</au><au>Wormhoudt, Thera A.M.</au><au>Rijss, Johan P.L.</au><au>van Os, Carel H.</au><au>Deen, Peter M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-05-04</date><risdate>1999</risdate><volume>18</volume><issue>9</issue><spage>2394</spage><epage>2400</epage><pages>2394-2400</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin‐2 (
AQP2
) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2‐E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild‐type AQP2 and AQP2‐E258K also formed homotetramers, whereas AQP2‐R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co‐injection, AQP2‐E258K, but not AQP2‐R187C, was able to heterotetramerize with wild‐type AQP2. Since an AQP monomer is the functional unit and AQP2‐E258K is a functional but misrouted water channel, heterotetramerization of AQP2‐E258K with wild‐type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the ‘loss‐of‐function’ phenotype is caused by an impaired routing rather than impaired function of the wild‐type protein.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10228154</pmid><doi>10.1093/emboj/18.9.2394</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 1999-05, Vol.18 (9), p.2394-2400 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171322 |
source | MEDLINE; Wiley Online Library Journals; Full-Text Journals in Chemistry (Open access); Wiley Online Library Journals Frontfile Complete; PubMed Central; EZB Electronic Journals Library |
subjects | Animals Aquaporin 2 Aquaporin 6 Aquaporins - antagonists & inhibitors Aquaporins - genetics Aquaporins - metabolism Centrifugation Diabetes Insipidus, Nephrogenic - genetics Diabetes Insipidus, Nephrogenic - metabolism disease Humans Kidneys Models, Biological Mutation oligomerization Oocytes Protein Conformation recessive Recombinant Proteins - metabolism Water - metabolism Xenopus laevis |
title | An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20impaired%20routing%20of%20wild-type%20aquaporin-2%20after%20tetramerization%20with%20an%20aquaporin-2%20mutant%20explains%20dominant%20nephrogenic%20diabetes%20insipidus&rft.jtitle=The%20EMBO%20journal&rft.au=Kamsteeg,%20Erik-Jan&rft.date=1999-05-04&rft.volume=18&rft.issue=9&rft.spage=2394&rft.epage=2400&rft.pages=2394-2400&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.9.2394&rft_dat=%3Cproquest_pubme%3E17229774%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195261743&rft_id=info:pmid/10228154&rfr_iscdi=true |