Microglia density measured by TSPO PET across amyloid positivity and clinical variants

Background We hypothesized that TSPO PET, which measures microglia density, would be elevated in the presence of amyloid and impairment across different clinical variants in a pattern that follows their characteristic tau distribution. Method Participants (n = 17 amyloid‐negative control, 3 amyloid‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2024-12, Vol.20 (S8), p.n/a
Hauptverfasser: Houlihan, Hannah M., Johnson, Aubrey S., Smith, Anna C., Guzmán, Diana S., Okafor, Amarachukwu, Heuer, Lauren B., Talmasov, Daniel, Chikwem, Ndubisi, Dass, Dina S., Noble, James M., Kreisl, William C., Small, Scott A., Lao, Patrick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S8
container_start_page
container_title Alzheimer's & dementia
container_volume 20
creator Houlihan, Hannah M.
Johnson, Aubrey S.
Smith, Anna C.
Guzmán, Diana S.
Okafor, Amarachukwu
Heuer, Lauren B.
Talmasov, Daniel
Chikwem, Ndubisi
Dass, Dina S.
Noble, James M.
Kreisl, William C.
Small, Scott A.
Lao, Patrick J.
description Background We hypothesized that TSPO PET, which measures microglia density, would be elevated in the presence of amyloid and impairment across different clinical variants in a pattern that follows their characteristic tau distribution. Method Participants (n = 17 amyloid‐negative control, 3 amyloid‐positive AD, 2 amyloid‐positive PCA, 6 amyloid‐negative with impairment (1 aMCI, 1 MCI, 3 AD, 1 LATE); age = 69±7, 43% women) from the Longitudinal Imaging of Microglial Activation in Different Clinical Variants of Alzheimer’s Disease study underwent amyloid PET (Florbetaben), tau PET (MK6240), and TSPO PET (ER176). Amyloid positivity was determined by visual read. Clinical groups were determined at ADRC consensus. Partial volume corrected TSPO and tau SUVR was compared across amyloid positivity and clinical variants (amyloid‐negative controls as reference group). Result The amyloid‐positive AD group had elevated TSPO in amygdala (0.34, p = 0.01), prefrontal cortex (0.31, p = 0.0004), middle inferior temporal gyrus (0.29, p = 0.0003), inferior parietal lobe (0.28, p = 0.001), superior temporal lobe (0.23, p = 0.001), cingulate gyrus (0.19, p = 0.01), superior parietal lobe (0.19, 0.04), insula (0.14, p = 0.02), and lingual gyrus (0.13, p = 0.02), while the amyloid‐positive PCA group had elevated TSPO in amygdala (0.50, p = 0.001), superior parietal lobe (0.38, p = 0.04), inferior parietal lobe (0.29, p = 0.001), middle inferior temporal gyrus (0.20, p = 0.0003), prefrontal cortex (0.15, p = 0.0004), superior temporal lobe (0.14, p = 0.001), cingulate gyrus (0.13, p = 0.01), and insula (0.06, p = 0.02). The impaired amyloid‐negative group had elevated TPSO in the amygdala (0.31, p = 0.04), fusiform gyrus (0.15, p = 0.05), cingulate gyrus (0.14, p = 0.02), middle inferior temporal gyrus (0.12, p = 0.02), superior temporal lobe (0.12, p = 0.02), prefrontal cortex (0.12, p = 0.02), and inferior parietal lobe (0.11, p = 0.02). These elevations in TSPO spatially coincide with elevations in tau burden (Figure 1). Conclusion Microglia may respond to amyloid pathology and follow a spatial pattern similar to that of tau pathology for a given clinical variant. Interestingly, microglia were elevated to the greatest extent in key limbic regions for amyloid‐negative impaired participants. Non‐AD pathologies may be driving this limbic neuroinflammation or limbic neuroinflammation itself may be sufficient for clinical impairment in the context of low amyloid and tau burden.
doi_str_mv 10.1002/alz.095057
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11713120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ095057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1697-13d370e92b207c7698a99ec8014e89e2b44838c10e8e1ac6b2812d0ce0ae281c3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKsbf8GshdZ7J6-ZlZRSH1BpwerCzTCZ3NaRSVIybSX-elNTCm5c3QP3OwfOCYJrhCEC8FvtvocgY4jTk6CHccwHMU_l6VEncB5ceP8JEIHAuBe8PVtTVytnNcup9HbTsIK039aUs6xhi5f5jM0nC6Zbynumi8ZVNmfrqkXtbo_rMmfG2dIa7dhO11aXG38ZnC2183R1uP3g9X6yGD8OprOHp_FoOjCYyHSAYR6mQJJnHFKTJlJoKckIwIiEJJ5FkQiFQSBBqE2ScYE8B0OgqZUm7Ad3Xe56mxWUGyo3tXZqXdtC142qtFV_P6X9UKtqpxBTDJFDm3DTJfwWrGl5NCOo_aaq3VR1m7YwdvCXddT8Q6rR9P3g-QHGrXrH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microglia density measured by TSPO PET across amyloid positivity and clinical variants</title><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Houlihan, Hannah M. ; Johnson, Aubrey S. ; Smith, Anna C. ; Guzmán, Diana S. ; Okafor, Amarachukwu ; Heuer, Lauren B. ; Talmasov, Daniel ; Chikwem, Ndubisi ; Dass, Dina S. ; Noble, James M. ; Kreisl, William C. ; Small, Scott A. ; Lao, Patrick J.</creator><creatorcontrib>Houlihan, Hannah M. ; Johnson, Aubrey S. ; Smith, Anna C. ; Guzmán, Diana S. ; Okafor, Amarachukwu ; Heuer, Lauren B. ; Talmasov, Daniel ; Chikwem, Ndubisi ; Dass, Dina S. ; Noble, James M. ; Kreisl, William C. ; Small, Scott A. ; Lao, Patrick J.</creatorcontrib><description>Background We hypothesized that TSPO PET, which measures microglia density, would be elevated in the presence of amyloid and impairment across different clinical variants in a pattern that follows their characteristic tau distribution. Method Participants (n = 17 amyloid‐negative control, 3 amyloid‐positive AD, 2 amyloid‐positive PCA, 6 amyloid‐negative with impairment (1 aMCI, 1 MCI, 3 AD, 1 LATE); age = 69±7, 43% women) from the Longitudinal Imaging of Microglial Activation in Different Clinical Variants of Alzheimer’s Disease study underwent amyloid PET (Florbetaben), tau PET (MK6240), and TSPO PET (ER176). Amyloid positivity was determined by visual read. Clinical groups were determined at ADRC consensus. Partial volume corrected TSPO and tau SUVR was compared across amyloid positivity and clinical variants (amyloid‐negative controls as reference group). Result The amyloid‐positive AD group had elevated TSPO in amygdala (0.34, p = 0.01), prefrontal cortex (0.31, p = 0.0004), middle inferior temporal gyrus (0.29, p = 0.0003), inferior parietal lobe (0.28, p = 0.001), superior temporal lobe (0.23, p = 0.001), cingulate gyrus (0.19, p = 0.01), superior parietal lobe (0.19, 0.04), insula (0.14, p = 0.02), and lingual gyrus (0.13, p = 0.02), while the amyloid‐positive PCA group had elevated TSPO in amygdala (0.50, p = 0.001), superior parietal lobe (0.38, p = 0.04), inferior parietal lobe (0.29, p = 0.001), middle inferior temporal gyrus (0.20, p = 0.0003), prefrontal cortex (0.15, p = 0.0004), superior temporal lobe (0.14, p = 0.001), cingulate gyrus (0.13, p = 0.01), and insula (0.06, p = 0.02). The impaired amyloid‐negative group had elevated TPSO in the amygdala (0.31, p = 0.04), fusiform gyrus (0.15, p = 0.05), cingulate gyrus (0.14, p = 0.02), middle inferior temporal gyrus (0.12, p = 0.02), superior temporal lobe (0.12, p = 0.02), prefrontal cortex (0.12, p = 0.02), and inferior parietal lobe (0.11, p = 0.02). These elevations in TSPO spatially coincide with elevations in tau burden (Figure 1). Conclusion Microglia may respond to amyloid pathology and follow a spatial pattern similar to that of tau pathology for a given clinical variant. Interestingly, microglia were elevated to the greatest extent in key limbic regions for amyloid‐negative impaired participants. Non‐AD pathologies may be driving this limbic neuroinflammation or limbic neuroinflammation itself may be sufficient for clinical impairment in the context of low amyloid and tau burden.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.095057</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><subject>Biomarkers</subject><ispartof>Alzheimer's &amp; dementia, 2024-12, Vol.20 (S8), p.n/a</ispartof><rights>2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713120/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713120/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids></links><search><creatorcontrib>Houlihan, Hannah M.</creatorcontrib><creatorcontrib>Johnson, Aubrey S.</creatorcontrib><creatorcontrib>Smith, Anna C.</creatorcontrib><creatorcontrib>Guzmán, Diana S.</creatorcontrib><creatorcontrib>Okafor, Amarachukwu</creatorcontrib><creatorcontrib>Heuer, Lauren B.</creatorcontrib><creatorcontrib>Talmasov, Daniel</creatorcontrib><creatorcontrib>Chikwem, Ndubisi</creatorcontrib><creatorcontrib>Dass, Dina S.</creatorcontrib><creatorcontrib>Noble, James M.</creatorcontrib><creatorcontrib>Kreisl, William C.</creatorcontrib><creatorcontrib>Small, Scott A.</creatorcontrib><creatorcontrib>Lao, Patrick J.</creatorcontrib><title>Microglia density measured by TSPO PET across amyloid positivity and clinical variants</title><title>Alzheimer's &amp; dementia</title><description>Background We hypothesized that TSPO PET, which measures microglia density, would be elevated in the presence of amyloid and impairment across different clinical variants in a pattern that follows their characteristic tau distribution. Method Participants (n = 17 amyloid‐negative control, 3 amyloid‐positive AD, 2 amyloid‐positive PCA, 6 amyloid‐negative with impairment (1 aMCI, 1 MCI, 3 AD, 1 LATE); age = 69±7, 43% women) from the Longitudinal Imaging of Microglial Activation in Different Clinical Variants of Alzheimer’s Disease study underwent amyloid PET (Florbetaben), tau PET (MK6240), and TSPO PET (ER176). Amyloid positivity was determined by visual read. Clinical groups were determined at ADRC consensus. Partial volume corrected TSPO and tau SUVR was compared across amyloid positivity and clinical variants (amyloid‐negative controls as reference group). Result The amyloid‐positive AD group had elevated TSPO in amygdala (0.34, p = 0.01), prefrontal cortex (0.31, p = 0.0004), middle inferior temporal gyrus (0.29, p = 0.0003), inferior parietal lobe (0.28, p = 0.001), superior temporal lobe (0.23, p = 0.001), cingulate gyrus (0.19, p = 0.01), superior parietal lobe (0.19, 0.04), insula (0.14, p = 0.02), and lingual gyrus (0.13, p = 0.02), while the amyloid‐positive PCA group had elevated TSPO in amygdala (0.50, p = 0.001), superior parietal lobe (0.38, p = 0.04), inferior parietal lobe (0.29, p = 0.001), middle inferior temporal gyrus (0.20, p = 0.0003), prefrontal cortex (0.15, p = 0.0004), superior temporal lobe (0.14, p = 0.001), cingulate gyrus (0.13, p = 0.01), and insula (0.06, p = 0.02). The impaired amyloid‐negative group had elevated TPSO in the amygdala (0.31, p = 0.04), fusiform gyrus (0.15, p = 0.05), cingulate gyrus (0.14, p = 0.02), middle inferior temporal gyrus (0.12, p = 0.02), superior temporal lobe (0.12, p = 0.02), prefrontal cortex (0.12, p = 0.02), and inferior parietal lobe (0.11, p = 0.02). These elevations in TSPO spatially coincide with elevations in tau burden (Figure 1). Conclusion Microglia may respond to amyloid pathology and follow a spatial pattern similar to that of tau pathology for a given clinical variant. Interestingly, microglia were elevated to the greatest extent in key limbic regions for amyloid‐negative impaired participants. Non‐AD pathologies may be driving this limbic neuroinflammation or limbic neuroinflammation itself may be sufficient for clinical impairment in the context of low amyloid and tau burden.</description><subject>Biomarkers</subject><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEtLw0AUhYMoWKsbf8GshdZ7J6-ZlZRSH1BpwerCzTCZ3NaRSVIybSX-elNTCm5c3QP3OwfOCYJrhCEC8FvtvocgY4jTk6CHccwHMU_l6VEncB5ceP8JEIHAuBe8PVtTVytnNcup9HbTsIK039aUs6xhi5f5jM0nC6Zbynumi8ZVNmfrqkXtbo_rMmfG2dIa7dhO11aXG38ZnC2183R1uP3g9X6yGD8OprOHp_FoOjCYyHSAYR6mQJJnHFKTJlJoKckIwIiEJJ5FkQiFQSBBqE2ScYE8B0OgqZUm7Ad3Xe56mxWUGyo3tXZqXdtC142qtFV_P6X9UKtqpxBTDJFDm3DTJfwWrGl5NCOo_aaq3VR1m7YwdvCXddT8Q6rR9P3g-QHGrXrH</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Houlihan, Hannah M.</creator><creator>Johnson, Aubrey S.</creator><creator>Smith, Anna C.</creator><creator>Guzmán, Diana S.</creator><creator>Okafor, Amarachukwu</creator><creator>Heuer, Lauren B.</creator><creator>Talmasov, Daniel</creator><creator>Chikwem, Ndubisi</creator><creator>Dass, Dina S.</creator><creator>Noble, James M.</creator><creator>Kreisl, William C.</creator><creator>Small, Scott A.</creator><creator>Lao, Patrick J.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>202412</creationdate><title>Microglia density measured by TSPO PET across amyloid positivity and clinical variants</title><author>Houlihan, Hannah M. ; Johnson, Aubrey S. ; Smith, Anna C. ; Guzmán, Diana S. ; Okafor, Amarachukwu ; Heuer, Lauren B. ; Talmasov, Daniel ; Chikwem, Ndubisi ; Dass, Dina S. ; Noble, James M. ; Kreisl, William C. ; Small, Scott A. ; Lao, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1697-13d370e92b207c7698a99ec8014e89e2b44838c10e8e1ac6b2812d0ce0ae281c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomarkers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houlihan, Hannah M.</creatorcontrib><creatorcontrib>Johnson, Aubrey S.</creatorcontrib><creatorcontrib>Smith, Anna C.</creatorcontrib><creatorcontrib>Guzmán, Diana S.</creatorcontrib><creatorcontrib>Okafor, Amarachukwu</creatorcontrib><creatorcontrib>Heuer, Lauren B.</creatorcontrib><creatorcontrib>Talmasov, Daniel</creatorcontrib><creatorcontrib>Chikwem, Ndubisi</creatorcontrib><creatorcontrib>Dass, Dina S.</creatorcontrib><creatorcontrib>Noble, James M.</creatorcontrib><creatorcontrib>Kreisl, William C.</creatorcontrib><creatorcontrib>Small, Scott A.</creatorcontrib><creatorcontrib>Lao, Patrick J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houlihan, Hannah M.</au><au>Johnson, Aubrey S.</au><au>Smith, Anna C.</au><au>Guzmán, Diana S.</au><au>Okafor, Amarachukwu</au><au>Heuer, Lauren B.</au><au>Talmasov, Daniel</au><au>Chikwem, Ndubisi</au><au>Dass, Dina S.</au><au>Noble, James M.</au><au>Kreisl, William C.</au><au>Small, Scott A.</au><au>Lao, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglia density measured by TSPO PET across amyloid positivity and clinical variants</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>S8</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background We hypothesized that TSPO PET, which measures microglia density, would be elevated in the presence of amyloid and impairment across different clinical variants in a pattern that follows their characteristic tau distribution. Method Participants (n = 17 amyloid‐negative control, 3 amyloid‐positive AD, 2 amyloid‐positive PCA, 6 amyloid‐negative with impairment (1 aMCI, 1 MCI, 3 AD, 1 LATE); age = 69±7, 43% women) from the Longitudinal Imaging of Microglial Activation in Different Clinical Variants of Alzheimer’s Disease study underwent amyloid PET (Florbetaben), tau PET (MK6240), and TSPO PET (ER176). Amyloid positivity was determined by visual read. Clinical groups were determined at ADRC consensus. Partial volume corrected TSPO and tau SUVR was compared across amyloid positivity and clinical variants (amyloid‐negative controls as reference group). Result The amyloid‐positive AD group had elevated TSPO in amygdala (0.34, p = 0.01), prefrontal cortex (0.31, p = 0.0004), middle inferior temporal gyrus (0.29, p = 0.0003), inferior parietal lobe (0.28, p = 0.001), superior temporal lobe (0.23, p = 0.001), cingulate gyrus (0.19, p = 0.01), superior parietal lobe (0.19, 0.04), insula (0.14, p = 0.02), and lingual gyrus (0.13, p = 0.02), while the amyloid‐positive PCA group had elevated TSPO in amygdala (0.50, p = 0.001), superior parietal lobe (0.38, p = 0.04), inferior parietal lobe (0.29, p = 0.001), middle inferior temporal gyrus (0.20, p = 0.0003), prefrontal cortex (0.15, p = 0.0004), superior temporal lobe (0.14, p = 0.001), cingulate gyrus (0.13, p = 0.01), and insula (0.06, p = 0.02). The impaired amyloid‐negative group had elevated TPSO in the amygdala (0.31, p = 0.04), fusiform gyrus (0.15, p = 0.05), cingulate gyrus (0.14, p = 0.02), middle inferior temporal gyrus (0.12, p = 0.02), superior temporal lobe (0.12, p = 0.02), prefrontal cortex (0.12, p = 0.02), and inferior parietal lobe (0.11, p = 0.02). These elevations in TSPO spatially coincide with elevations in tau burden (Figure 1). Conclusion Microglia may respond to amyloid pathology and follow a spatial pattern similar to that of tau pathology for a given clinical variant. Interestingly, microglia were elevated to the greatest extent in key limbic regions for amyloid‐negative impaired participants. Non‐AD pathologies may be driving this limbic neuroinflammation or limbic neuroinflammation itself may be sufficient for clinical impairment in the context of low amyloid and tau burden.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><doi>10.1002/alz.095057</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2024-12, Vol.20 (S8), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11713120
source Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; PubMed Central; PubMed Central Open Access
subjects Biomarkers
title Microglia density measured by TSPO PET across amyloid positivity and clinical variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglia%20density%20measured%20by%20TSPO%20PET%20across%20amyloid%20positivity%20and%20clinical%20variants&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Houlihan,%20Hannah%20M.&rft.date=2024-12&rft.volume=20&rft.issue=S8&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.095057&rft_dat=%3Cwiley_pubme%3EALZ095057%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true