Comparison of reference region stability for longitudinal amyloid PET in Down syndrome
Background The cerebellum is frequently used as the reference region for amyloid PET analysis. However, this reference region has been shown to demonstrate longitudinal variability, particularly with [18F]florbetapir (FBP) PET (Landau, JNM 2015). For investigations in individuals with Down syndrome...
Gespeichert in:
Veröffentlicht in: | Alzheimer's & dementia 2024-12, Vol.20 (S9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | S9 |
container_start_page | |
container_title | Alzheimer's & dementia |
container_volume | 20 |
creator | McLachlan, Max Rouanet, Jeremy P. Garimella, Arun Price, Julie C Tudorascu, Dana Laymon, Charles M Keator, David B. Betthauser, Tobey J. Kreisl, William Charles Lao, Patrick J. Minhas, Davneet S Klunk, William E Cohen, Annie Handen, Benjamin L Fryer, Tim D Zaman, Shahid Koeppe, Robert A. Head, Elizabeth Mapstone, Mark Bettcher, Brecca LeMerise, Lisette McVea, Andrew K DiFilippo, Alexandra H Zammit, Matthew D Hartley, Sigan L Christian, Bradley T. |
description | Background
The cerebellum is frequently used as the reference region for amyloid PET analysis. However, this reference region has been shown to demonstrate longitudinal variability, particularly with [18F]florbetapir (FBP) PET (Landau, JNM 2015). For investigations in individuals with Down syndrome (DS), cerebellar atrophy and rapid disease progression may increase these longitudinal variabilities. Although white matter possesses different non‐displaceable uptake properties, the relative lack of specific binding makes white matter a suitable reference region for longitudinal studies. This work compares the observed longitudinal change when using whole cerebellum and white matter reference regions in [18F]FBP and [11C]PiB scans of adults with DS.
Method
Participants with DS, recruited through the ABC‐DS study, underwent longitudinal PiB or FBP PET imaging and T1w MRIs (Table 1 lists cohort differences). PET images were smoothed to 8mm resolution, summed 50‐70 min, co‐registered with the MRI, and normalized to a common DS MRI template (LeMerise, 2022). GAINN whole cerebellum (WC) VOI was applied to create SUVRWC. Whole brain white matter was segmented in native space using SPM, smoothed to PET resolution, and eroded to 90% tissue probability. The resulting eroded white matter (EWM) mask was used as reference to create SUVREWM. Average SUVR was calculated for GAINN global cortex (CTX). Longitudinal scans were assessed for correlations between reference region strategies and average rate of SUVR change: % Change/year = (SUVR2‐SUVR1)/(SUVR1*Δt).
Result
Figure 1 displays the averaged EWM reference template. Figure 2 displays longitudinal PET data and regressions between SUVRs. Across participants, SUVRWC shows 78/90 (PiB) and 50/83 (FBP) between‐scan increases. SUVREWM shows 66/90 (PiB) and 71/83 (FBP) between‐scan increases. For A+ individuals (18CL cutoff), the average difference (% ChangeEWM ‐ % ChangeWC)/year is ‐0.5%/year [‐1.2,0.3] (PiB) and 1.9%/yr [0.5,3.3]** (FBP). FBP group SD in % Change/year decreases from 5.6% (WC) to 2.9% (EWM).
Conclusion
As observed in LOAD, SUVREWM demonstrates lower group variability and greater longitudinal change in FBP. SUVREWM shows strong agreement with SUVRWC in PiB. These data suggest that an EWM reference region can reduce variability in longitudinal FBP studies in DS. |
doi_str_mv | 10.1002/alz.094104 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11712623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ094104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1694-499b97e76f0a9240fd6f77f09123f7f5aec82ccc8ccb2406833c71317df0b3653</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsbf0HWwmgeM5PJSkqtDyjoorpwEzKZpEYySclMLeOvNzKl4MbVPdzz3QP3AHCJ0TVGiNxI932NeI5RfgQmuChIVhDGjw-6RKfgrOs-EcpRhYsJeJuHdiOj7YKHwcCojY7aK53U2qZd18vaOtsP0IQIXfBr228b66WDsh1csA18Wayg9fAu7BI--CaGVp-DEyNdpy_2cwpe7xer-WO2fH54ms-WmcIlz7Oc85ozzUqDJCc5Mk1pGDOIY0INM4XUqiJKqUqpOtllRalimGLWGFTTsqBTcDvmbrZ1qxulfR-lE5toWxkHEaQVfx1vP8Q6fAmMGSYloSnhakxQMXRd-v9wjJH47VSkTsXYaYLxCO-s08M_pJgt3_c3P391e0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of reference region stability for longitudinal amyloid PET in Down syndrome</title><source>Wiley-Blackwell Open Access Collection</source><source>Wiley Online Library</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>McLachlan, Max ; Rouanet, Jeremy P. ; Garimella, Arun ; Price, Julie C ; Tudorascu, Dana ; Laymon, Charles M ; Keator, David B. ; Betthauser, Tobey J. ; Kreisl, William Charles ; Lao, Patrick J. ; Minhas, Davneet S ; Klunk, William E ; Cohen, Annie ; Handen, Benjamin L ; Fryer, Tim D ; Zaman, Shahid ; Koeppe, Robert A. ; Head, Elizabeth ; Mapstone, Mark ; Bettcher, Brecca ; LeMerise, Lisette ; McVea, Andrew K ; DiFilippo, Alexandra H ; Zammit, Matthew D ; Hartley, Sigan L ; Christian, Bradley T.</creator><creatorcontrib>McLachlan, Max ; Rouanet, Jeremy P. ; Garimella, Arun ; Price, Julie C ; Tudorascu, Dana ; Laymon, Charles M ; Keator, David B. ; Betthauser, Tobey J. ; Kreisl, William Charles ; Lao, Patrick J. ; Minhas, Davneet S ; Klunk, William E ; Cohen, Annie ; Handen, Benjamin L ; Fryer, Tim D ; Zaman, Shahid ; Koeppe, Robert A. ; Head, Elizabeth ; Mapstone, Mark ; Bettcher, Brecca ; LeMerise, Lisette ; McVea, Andrew K ; DiFilippo, Alexandra H ; Zammit, Matthew D ; Hartley, Sigan L ; Christian, Bradley T.</creatorcontrib><description>Background
The cerebellum is frequently used as the reference region for amyloid PET analysis. However, this reference region has been shown to demonstrate longitudinal variability, particularly with [18F]florbetapir (FBP) PET (Landau, JNM 2015). For investigations in individuals with Down syndrome (DS), cerebellar atrophy and rapid disease progression may increase these longitudinal variabilities. Although white matter possesses different non‐displaceable uptake properties, the relative lack of specific binding makes white matter a suitable reference region for longitudinal studies. This work compares the observed longitudinal change when using whole cerebellum and white matter reference regions in [18F]FBP and [11C]PiB scans of adults with DS.
Method
Participants with DS, recruited through the ABC‐DS study, underwent longitudinal PiB or FBP PET imaging and T1w MRIs (Table 1 lists cohort differences). PET images were smoothed to 8mm resolution, summed 50‐70 min, co‐registered with the MRI, and normalized to a common DS MRI template (LeMerise, 2022). GAINN whole cerebellum (WC) VOI was applied to create SUVRWC. Whole brain white matter was segmented in native space using SPM, smoothed to PET resolution, and eroded to 90% tissue probability. The resulting eroded white matter (EWM) mask was used as reference to create SUVREWM. Average SUVR was calculated for GAINN global cortex (CTX). Longitudinal scans were assessed for correlations between reference region strategies and average rate of SUVR change: % Change/year = (SUVR2‐SUVR1)/(SUVR1*Δt).
Result
Figure 1 displays the averaged EWM reference template. Figure 2 displays longitudinal PET data and regressions between SUVRs. Across participants, SUVRWC shows 78/90 (PiB) and 50/83 (FBP) between‐scan increases. SUVREWM shows 66/90 (PiB) and 71/83 (FBP) between‐scan increases. For A+ individuals (18CL cutoff), the average difference (% ChangeEWM ‐ % ChangeWC)/year is ‐0.5%/year [‐1.2,0.3] (PiB) and 1.9%/yr [0.5,3.3]** (FBP). FBP group SD in % Change/year decreases from 5.6% (WC) to 2.9% (EWM).
Conclusion
As observed in LOAD, SUVREWM demonstrates lower group variability and greater longitudinal change in FBP. SUVREWM shows strong agreement with SUVRWC in PiB. These data suggest that an EWM reference region can reduce variability in longitudinal FBP studies in DS.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.094104</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons Inc</publisher><subject>Alzheimer's Imaging Consortium</subject><ispartof>Alzheimer's & dementia, 2024-12, Vol.20 (S9), p.n/a</ispartof><rights>2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712623/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712623/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids></links><search><creatorcontrib>McLachlan, Max</creatorcontrib><creatorcontrib>Rouanet, Jeremy P.</creatorcontrib><creatorcontrib>Garimella, Arun</creatorcontrib><creatorcontrib>Price, Julie C</creatorcontrib><creatorcontrib>Tudorascu, Dana</creatorcontrib><creatorcontrib>Laymon, Charles M</creatorcontrib><creatorcontrib>Keator, David B.</creatorcontrib><creatorcontrib>Betthauser, Tobey J.</creatorcontrib><creatorcontrib>Kreisl, William Charles</creatorcontrib><creatorcontrib>Lao, Patrick J.</creatorcontrib><creatorcontrib>Minhas, Davneet S</creatorcontrib><creatorcontrib>Klunk, William E</creatorcontrib><creatorcontrib>Cohen, Annie</creatorcontrib><creatorcontrib>Handen, Benjamin L</creatorcontrib><creatorcontrib>Fryer, Tim D</creatorcontrib><creatorcontrib>Zaman, Shahid</creatorcontrib><creatorcontrib>Koeppe, Robert A.</creatorcontrib><creatorcontrib>Head, Elizabeth</creatorcontrib><creatorcontrib>Mapstone, Mark</creatorcontrib><creatorcontrib>Bettcher, Brecca</creatorcontrib><creatorcontrib>LeMerise, Lisette</creatorcontrib><creatorcontrib>McVea, Andrew K</creatorcontrib><creatorcontrib>DiFilippo, Alexandra H</creatorcontrib><creatorcontrib>Zammit, Matthew D</creatorcontrib><creatorcontrib>Hartley, Sigan L</creatorcontrib><creatorcontrib>Christian, Bradley T.</creatorcontrib><title>Comparison of reference region stability for longitudinal amyloid PET in Down syndrome</title><title>Alzheimer's & dementia</title><description>Background
The cerebellum is frequently used as the reference region for amyloid PET analysis. However, this reference region has been shown to demonstrate longitudinal variability, particularly with [18F]florbetapir (FBP) PET (Landau, JNM 2015). For investigations in individuals with Down syndrome (DS), cerebellar atrophy and rapid disease progression may increase these longitudinal variabilities. Although white matter possesses different non‐displaceable uptake properties, the relative lack of specific binding makes white matter a suitable reference region for longitudinal studies. This work compares the observed longitudinal change when using whole cerebellum and white matter reference regions in [18F]FBP and [11C]PiB scans of adults with DS.
Method
Participants with DS, recruited through the ABC‐DS study, underwent longitudinal PiB or FBP PET imaging and T1w MRIs (Table 1 lists cohort differences). PET images were smoothed to 8mm resolution, summed 50‐70 min, co‐registered with the MRI, and normalized to a common DS MRI template (LeMerise, 2022). GAINN whole cerebellum (WC) VOI was applied to create SUVRWC. Whole brain white matter was segmented in native space using SPM, smoothed to PET resolution, and eroded to 90% tissue probability. The resulting eroded white matter (EWM) mask was used as reference to create SUVREWM. Average SUVR was calculated for GAINN global cortex (CTX). Longitudinal scans were assessed for correlations between reference region strategies and average rate of SUVR change: % Change/year = (SUVR2‐SUVR1)/(SUVR1*Δt).
Result
Figure 1 displays the averaged EWM reference template. Figure 2 displays longitudinal PET data and regressions between SUVRs. Across participants, SUVRWC shows 78/90 (PiB) and 50/83 (FBP) between‐scan increases. SUVREWM shows 66/90 (PiB) and 71/83 (FBP) between‐scan increases. For A+ individuals (18CL cutoff), the average difference (% ChangeEWM ‐ % ChangeWC)/year is ‐0.5%/year [‐1.2,0.3] (PiB) and 1.9%/yr [0.5,3.3]** (FBP). FBP group SD in % Change/year decreases from 5.6% (WC) to 2.9% (EWM).
Conclusion
As observed in LOAD, SUVREWM demonstrates lower group variability and greater longitudinal change in FBP. SUVREWM shows strong agreement with SUVRWC in PiB. These data suggest that an EWM reference region can reduce variability in longitudinal FBP studies in DS.</description><subject>Alzheimer's Imaging Consortium</subject><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEtLAzEUhYMoWKsbf0HWwmgeM5PJSkqtDyjoorpwEzKZpEYySclMLeOvNzKl4MbVPdzz3QP3AHCJ0TVGiNxI932NeI5RfgQmuChIVhDGjw-6RKfgrOs-EcpRhYsJeJuHdiOj7YKHwcCojY7aK53U2qZd18vaOtsP0IQIXfBr228b66WDsh1csA18Wayg9fAu7BI--CaGVp-DEyNdpy_2cwpe7xer-WO2fH54ms-WmcIlz7Oc85ozzUqDJCc5Mk1pGDOIY0INM4XUqiJKqUqpOtllRalimGLWGFTTsqBTcDvmbrZ1qxulfR-lE5toWxkHEaQVfx1vP8Q6fAmMGSYloSnhakxQMXRd-v9wjJH47VSkTsXYaYLxCO-s08M_pJgt3_c3P391e0Q</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>McLachlan, Max</creator><creator>Rouanet, Jeremy P.</creator><creator>Garimella, Arun</creator><creator>Price, Julie C</creator><creator>Tudorascu, Dana</creator><creator>Laymon, Charles M</creator><creator>Keator, David B.</creator><creator>Betthauser, Tobey J.</creator><creator>Kreisl, William Charles</creator><creator>Lao, Patrick J.</creator><creator>Minhas, Davneet S</creator><creator>Klunk, William E</creator><creator>Cohen, Annie</creator><creator>Handen, Benjamin L</creator><creator>Fryer, Tim D</creator><creator>Zaman, Shahid</creator><creator>Koeppe, Robert A.</creator><creator>Head, Elizabeth</creator><creator>Mapstone, Mark</creator><creator>Bettcher, Brecca</creator><creator>LeMerise, Lisette</creator><creator>McVea, Andrew K</creator><creator>DiFilippo, Alexandra H</creator><creator>Zammit, Matthew D</creator><creator>Hartley, Sigan L</creator><creator>Christian, Bradley T.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>202412</creationdate><title>Comparison of reference region stability for longitudinal amyloid PET in Down syndrome</title><author>McLachlan, Max ; Rouanet, Jeremy P. ; Garimella, Arun ; Price, Julie C ; Tudorascu, Dana ; Laymon, Charles M ; Keator, David B. ; Betthauser, Tobey J. ; Kreisl, William Charles ; Lao, Patrick J. ; Minhas, Davneet S ; Klunk, William E ; Cohen, Annie ; Handen, Benjamin L ; Fryer, Tim D ; Zaman, Shahid ; Koeppe, Robert A. ; Head, Elizabeth ; Mapstone, Mark ; Bettcher, Brecca ; LeMerise, Lisette ; McVea, Andrew K ; DiFilippo, Alexandra H ; Zammit, Matthew D ; Hartley, Sigan L ; Christian, Bradley T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1694-499b97e76f0a9240fd6f77f09123f7f5aec82ccc8ccb2406833c71317df0b3653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's Imaging Consortium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLachlan, Max</creatorcontrib><creatorcontrib>Rouanet, Jeremy P.</creatorcontrib><creatorcontrib>Garimella, Arun</creatorcontrib><creatorcontrib>Price, Julie C</creatorcontrib><creatorcontrib>Tudorascu, Dana</creatorcontrib><creatorcontrib>Laymon, Charles M</creatorcontrib><creatorcontrib>Keator, David B.</creatorcontrib><creatorcontrib>Betthauser, Tobey J.</creatorcontrib><creatorcontrib>Kreisl, William Charles</creatorcontrib><creatorcontrib>Lao, Patrick J.</creatorcontrib><creatorcontrib>Minhas, Davneet S</creatorcontrib><creatorcontrib>Klunk, William E</creatorcontrib><creatorcontrib>Cohen, Annie</creatorcontrib><creatorcontrib>Handen, Benjamin L</creatorcontrib><creatorcontrib>Fryer, Tim D</creatorcontrib><creatorcontrib>Zaman, Shahid</creatorcontrib><creatorcontrib>Koeppe, Robert A.</creatorcontrib><creatorcontrib>Head, Elizabeth</creatorcontrib><creatorcontrib>Mapstone, Mark</creatorcontrib><creatorcontrib>Bettcher, Brecca</creatorcontrib><creatorcontrib>LeMerise, Lisette</creatorcontrib><creatorcontrib>McVea, Andrew K</creatorcontrib><creatorcontrib>DiFilippo, Alexandra H</creatorcontrib><creatorcontrib>Zammit, Matthew D</creatorcontrib><creatorcontrib>Hartley, Sigan L</creatorcontrib><creatorcontrib>Christian, Bradley T.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Alzheimer's & dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLachlan, Max</au><au>Rouanet, Jeremy P.</au><au>Garimella, Arun</au><au>Price, Julie C</au><au>Tudorascu, Dana</au><au>Laymon, Charles M</au><au>Keator, David B.</au><au>Betthauser, Tobey J.</au><au>Kreisl, William Charles</au><au>Lao, Patrick J.</au><au>Minhas, Davneet S</au><au>Klunk, William E</au><au>Cohen, Annie</au><au>Handen, Benjamin L</au><au>Fryer, Tim D</au><au>Zaman, Shahid</au><au>Koeppe, Robert A.</au><au>Head, Elizabeth</au><au>Mapstone, Mark</au><au>Bettcher, Brecca</au><au>LeMerise, Lisette</au><au>McVea, Andrew K</au><au>DiFilippo, Alexandra H</au><au>Zammit, Matthew D</au><au>Hartley, Sigan L</au><au>Christian, Bradley T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of reference region stability for longitudinal amyloid PET in Down syndrome</atitle><jtitle>Alzheimer's & dementia</jtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>S9</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background
The cerebellum is frequently used as the reference region for amyloid PET analysis. However, this reference region has been shown to demonstrate longitudinal variability, particularly with [18F]florbetapir (FBP) PET (Landau, JNM 2015). For investigations in individuals with Down syndrome (DS), cerebellar atrophy and rapid disease progression may increase these longitudinal variabilities. Although white matter possesses different non‐displaceable uptake properties, the relative lack of specific binding makes white matter a suitable reference region for longitudinal studies. This work compares the observed longitudinal change when using whole cerebellum and white matter reference regions in [18F]FBP and [11C]PiB scans of adults with DS.
Method
Participants with DS, recruited through the ABC‐DS study, underwent longitudinal PiB or FBP PET imaging and T1w MRIs (Table 1 lists cohort differences). PET images were smoothed to 8mm resolution, summed 50‐70 min, co‐registered with the MRI, and normalized to a common DS MRI template (LeMerise, 2022). GAINN whole cerebellum (WC) VOI was applied to create SUVRWC. Whole brain white matter was segmented in native space using SPM, smoothed to PET resolution, and eroded to 90% tissue probability. The resulting eroded white matter (EWM) mask was used as reference to create SUVREWM. Average SUVR was calculated for GAINN global cortex (CTX). Longitudinal scans were assessed for correlations between reference region strategies and average rate of SUVR change: % Change/year = (SUVR2‐SUVR1)/(SUVR1*Δt).
Result
Figure 1 displays the averaged EWM reference template. Figure 2 displays longitudinal PET data and regressions between SUVRs. Across participants, SUVRWC shows 78/90 (PiB) and 50/83 (FBP) between‐scan increases. SUVREWM shows 66/90 (PiB) and 71/83 (FBP) between‐scan increases. For A+ individuals (18CL cutoff), the average difference (% ChangeEWM ‐ % ChangeWC)/year is ‐0.5%/year [‐1.2,0.3] (PiB) and 1.9%/yr [0.5,3.3]** (FBP). FBP group SD in % Change/year decreases from 5.6% (WC) to 2.9% (EWM).
Conclusion
As observed in LOAD, SUVREWM demonstrates lower group variability and greater longitudinal change in FBP. SUVREWM shows strong agreement with SUVRWC in PiB. These data suggest that an EWM reference region can reduce variability in longitudinal FBP studies in DS.</abstract><cop>Hoboken</cop><pub>John Wiley and Sons Inc</pub><doi>10.1002/alz.094104</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-5260 |
ispartof | Alzheimer's & dementia, 2024-12, Vol.20 (S9), p.n/a |
issn | 1552-5260 1552-5279 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11712623 |
source | Wiley-Blackwell Open Access Collection; Wiley Online Library; PubMed Central; PubMed Central Open Access |
subjects | Alzheimer's Imaging Consortium |
title | Comparison of reference region stability for longitudinal amyloid PET in Down syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20reference%20region%20stability%20for%20longitudinal%20amyloid%20PET%20in%20Down%20syndrome&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=McLachlan,%20Max&rft.date=2024-12&rft.volume=20&rft.issue=S9&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.094104&rft_dat=%3Cwiley_pubme%3EALZ094104%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |