The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 1999-03, Vol.18 (6), p.1492-1505
Hauptverfasser: Meacham, Geoffrey C., Lu, Zhen, King, Scott, Sorscher, Eric, Tousson, Albert, Cyr, Douglas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1505
container_issue 6
container_start_page 1492
container_title The EMBO journal
container_volume 18
creator Meacham, Geoffrey C.
Lu, Zhen
King, Scott
Sorscher, Eric
Tousson, Albert
Cyr, Douglas M.
description The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.
doi_str_mv 10.1093/emboj/18.6.1492
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69619518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6410-fae8b70a32d05d40ea6646521222ade3cd57d3e8ef24d14801a00b53b170f8f63</originalsourceid><addsrcrecordid>eNqFks2P0zAQxSMEYsvCmRuKOHBLO2PHjnNBYqvtdlH5ECpwtJxk0rqkSbFTdvvf45LVqiChPfng33t-4zdR9BJhjJDzCW2LbjNBNZZjTHP2KBphKiFhkInH0QiYxCRFlZ9Fz7zfAIBQGT6NzhACkDMcRdfLNcXzapOwydyXGcTl2uzIdS3FO2NdXJvSNrY3PfmYjGsOse9p52PbxtPZ8ktc2G5FLXnrn0dPatN4enF3nkdfZ5fL6TxZfLq6nr5bJKVMEZLakCoyMJxVIKoUyEiZSsGQMWYq4mUlsoqTopqlFaYK0AAUgheYQa1qyc-jt4Pvbl9sqSqp7Z1p9M7ZrXEH3Rmr_75p7Vqvul8aMUPGVTB4c2fgup978r3eWl9S05iWur3XMpeYC3wYxIwhyhwD-PofcNPtXRt-QQcnJvKcH6HJAJWu895RfR8ZQR_L1H_K1Ki01Mcyg-LV6aQn_NBeANQA3NiGDg_56csPF--DEIWCIIVB6oOqXZE7ifzfOMkgsWEFbu9fM-6HlhnPhP7-8UqH_fo8W6hcf-O_Ac2Wypc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259931</pqid></control><display><type>article</type><title>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Meacham, Geoffrey C. ; Lu, Zhen ; King, Scott ; Sorscher, Eric ; Tousson, Albert ; Cyr, Douglas M.</creator><creatorcontrib>Meacham, Geoffrey C. ; Lu, Zhen ; King, Scott ; Sorscher, Eric ; Tousson, Albert ; Cyr, Douglas M.</creatorcontrib><description>The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.6.1492</identifier><identifier>PMID: 10075921</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Carrier Proteins - metabolism ; cystic fibrosis transmembrane conductance regulator ; Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cytosol - metabolism ; DnaJ ; Heat-Shock Proteins - metabolism ; HeLa Cells ; HSC70 Heat-Shock Proteins ; HSP40 Heat-Shock Proteins ; Hsp70 ; HSP70 Heat-Shock Proteins - metabolism ; Humans ; membrane protein biogenesis ; Models, Molecular ; Pancreatic Neoplasms ; Peptide Fragments - chemistry ; Protein Biosynthesis ; protein folding ; Protein Structure, Secondary ; Recombinant Proteins - biosynthesis ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured</subject><ispartof>The EMBO journal, 1999-03, Vol.18 (6), p.1492-1505</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Mar 15, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6410-fae8b70a32d05d40ea6646521222ade3cd57d3e8ef24d14801a00b53b170f8f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171238/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171238/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10075921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meacham, Geoffrey C.</creatorcontrib><creatorcontrib>Lu, Zhen</creatorcontrib><creatorcontrib>King, Scott</creatorcontrib><creatorcontrib>Sorscher, Eric</creatorcontrib><creatorcontrib>Tousson, Albert</creatorcontrib><creatorcontrib>Cyr, Douglas M.</creatorcontrib><title>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.</description><subject>Carrier Proteins - metabolism</subject><subject>cystic fibrosis transmembrane conductance regulator</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cytosol - metabolism</subject><subject>DnaJ</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>HSC70 Heat-Shock Proteins</subject><subject>HSP40 Heat-Shock Proteins</subject><subject>Hsp70</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>membrane protein biogenesis</subject><subject>Models, Molecular</subject><subject>Pancreatic Neoplasms</subject><subject>Peptide Fragments - chemistry</subject><subject>Protein Biosynthesis</subject><subject>protein folding</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2P0zAQxSMEYsvCmRuKOHBLO2PHjnNBYqvtdlH5ECpwtJxk0rqkSbFTdvvf45LVqiChPfng33t-4zdR9BJhjJDzCW2LbjNBNZZjTHP2KBphKiFhkInH0QiYxCRFlZ9Fz7zfAIBQGT6NzhACkDMcRdfLNcXzapOwydyXGcTl2uzIdS3FO2NdXJvSNrY3PfmYjGsOse9p52PbxtPZ8ktc2G5FLXnrn0dPatN4enF3nkdfZ5fL6TxZfLq6nr5bJKVMEZLakCoyMJxVIKoUyEiZSsGQMWYq4mUlsoqTopqlFaYK0AAUgheYQa1qyc-jt4Pvbl9sqSqp7Z1p9M7ZrXEH3Rmr_75p7Vqvul8aMUPGVTB4c2fgup978r3eWl9S05iWur3XMpeYC3wYxIwhyhwD-PofcNPtXRt-QQcnJvKcH6HJAJWu895RfR8ZQR_L1H_K1Ki01Mcyg-LV6aQn_NBeANQA3NiGDg_56csPF--DEIWCIIVB6oOqXZE7ifzfOMkgsWEFbu9fM-6HlhnPhP7-8UqH_fo8W6hcf-O_Ac2Wypc</recordid><startdate>19990315</startdate><enddate>19990315</enddate><creator>Meacham, Geoffrey C.</creator><creator>Lu, Zhen</creator><creator>King, Scott</creator><creator>Sorscher, Eric</creator><creator>Tousson, Albert</creator><creator>Cyr, Douglas M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990315</creationdate><title>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</title><author>Meacham, Geoffrey C. ; Lu, Zhen ; King, Scott ; Sorscher, Eric ; Tousson, Albert ; Cyr, Douglas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6410-fae8b70a32d05d40ea6646521222ade3cd57d3e8ef24d14801a00b53b170f8f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Carrier Proteins - metabolism</topic><topic>cystic fibrosis transmembrane conductance regulator</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cytosol - metabolism</topic><topic>DnaJ</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>HSC70 Heat-Shock Proteins</topic><topic>HSP40 Heat-Shock Proteins</topic><topic>Hsp70</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>membrane protein biogenesis</topic><topic>Models, Molecular</topic><topic>Pancreatic Neoplasms</topic><topic>Peptide Fragments - chemistry</topic><topic>Protein Biosynthesis</topic><topic>protein folding</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meacham, Geoffrey C.</creatorcontrib><creatorcontrib>Lu, Zhen</creatorcontrib><creatorcontrib>King, Scott</creatorcontrib><creatorcontrib>Sorscher, Eric</creatorcontrib><creatorcontrib>Tousson, Albert</creatorcontrib><creatorcontrib>Cyr, Douglas M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meacham, Geoffrey C.</au><au>Lu, Zhen</au><au>King, Scott</au><au>Sorscher, Eric</au><au>Tousson, Albert</au><au>Cyr, Douglas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-03-15</date><risdate>1999</risdate><volume>18</volume><issue>6</issue><spage>1492</spage><epage>1505</epage><pages>1492-1505</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10075921</pmid><doi>10.1093/emboj/18.6.1492</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1999-03, Vol.18 (6), p.1492-1505
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171238
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Carrier Proteins - metabolism
cystic fibrosis transmembrane conductance regulator
Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cytosol - metabolism
DnaJ
Heat-Shock Proteins - metabolism
HeLa Cells
HSC70 Heat-Shock Proteins
HSP40 Heat-Shock Proteins
Hsp70
HSP70 Heat-Shock Proteins - metabolism
Humans
membrane protein biogenesis
Models, Molecular
Pancreatic Neoplasms
Peptide Fragments - chemistry
Protein Biosynthesis
protein folding
Protein Structure, Secondary
Recombinant Proteins - biosynthesis
Transcription, Genetic
Transfection
Tumor Cells, Cultured
title The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hdj-2/Hsc70%20chaperone%20pair%20facilitates%20early%20steps%20in%20CFTR%20biogenesis&rft.jtitle=The%20EMBO%20journal&rft.au=Meacham,%20Geoffrey%20C.&rft.date=1999-03-15&rft.volume=18&rft.issue=6&rft.spage=1492&rft.epage=1505&rft.pages=1492-1505&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.6.1492&rft_dat=%3Cproquest_pubme%3E69619518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259931&rft_id=info:pmid/10075921&rfr_iscdi=true