The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve th...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 1999-03, Vol.18 (6), p.1492-1505 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1505 |
---|---|
container_issue | 6 |
container_start_page | 1492 |
container_title | The EMBO journal |
container_volume | 18 |
creator | Meacham, Geoffrey C. Lu, Zhen King, Scott Sorscher, Eric Tousson, Albert Cyr, Douglas M. |
description | The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed. |
doi_str_mv | 10.1093/emboj/18.6.1492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69619518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6410-fae8b70a32d05d40ea6646521222ade3cd57d3e8ef24d14801a00b53b170f8f63</originalsourceid><addsrcrecordid>eNqFks2P0zAQxSMEYsvCmRuKOHBLO2PHjnNBYqvtdlH5ECpwtJxk0rqkSbFTdvvf45LVqiChPfng33t-4zdR9BJhjJDzCW2LbjNBNZZjTHP2KBphKiFhkInH0QiYxCRFlZ9Fz7zfAIBQGT6NzhACkDMcRdfLNcXzapOwydyXGcTl2uzIdS3FO2NdXJvSNrY3PfmYjGsOse9p52PbxtPZ8ktc2G5FLXnrn0dPatN4enF3nkdfZ5fL6TxZfLq6nr5bJKVMEZLakCoyMJxVIKoUyEiZSsGQMWYq4mUlsoqTopqlFaYK0AAUgheYQa1qyc-jt4Pvbl9sqSqp7Z1p9M7ZrXEH3Rmr_75p7Vqvul8aMUPGVTB4c2fgup978r3eWl9S05iWur3XMpeYC3wYxIwhyhwD-PofcNPtXRt-QQcnJvKcH6HJAJWu895RfR8ZQR_L1H_K1Ki01Mcyg-LV6aQn_NBeANQA3NiGDg_56csPF--DEIWCIIVB6oOqXZE7ifzfOMkgsWEFbu9fM-6HlhnPhP7-8UqH_fo8W6hcf-O_Ac2Wypc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259931</pqid></control><display><type>article</type><title>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Meacham, Geoffrey C. ; Lu, Zhen ; King, Scott ; Sorscher, Eric ; Tousson, Albert ; Cyr, Douglas M.</creator><creatorcontrib>Meacham, Geoffrey C. ; Lu, Zhen ; King, Scott ; Sorscher, Eric ; Tousson, Albert ; Cyr, Douglas M.</creatorcontrib><description>The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.6.1492</identifier><identifier>PMID: 10075921</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Carrier Proteins - metabolism ; cystic fibrosis transmembrane conductance regulator ; Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cytosol - metabolism ; DnaJ ; Heat-Shock Proteins - metabolism ; HeLa Cells ; HSC70 Heat-Shock Proteins ; HSP40 Heat-Shock Proteins ; Hsp70 ; HSP70 Heat-Shock Proteins - metabolism ; Humans ; membrane protein biogenesis ; Models, Molecular ; Pancreatic Neoplasms ; Peptide Fragments - chemistry ; Protein Biosynthesis ; protein folding ; Protein Structure, Secondary ; Recombinant Proteins - biosynthesis ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured</subject><ispartof>The EMBO journal, 1999-03, Vol.18 (6), p.1492-1505</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Mar 15, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6410-fae8b70a32d05d40ea6646521222ade3cd57d3e8ef24d14801a00b53b170f8f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171238/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171238/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10075921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meacham, Geoffrey C.</creatorcontrib><creatorcontrib>Lu, Zhen</creatorcontrib><creatorcontrib>King, Scott</creatorcontrib><creatorcontrib>Sorscher, Eric</creatorcontrib><creatorcontrib>Tousson, Albert</creatorcontrib><creatorcontrib>Cyr, Douglas M.</creatorcontrib><title>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.</description><subject>Carrier Proteins - metabolism</subject><subject>cystic fibrosis transmembrane conductance regulator</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cytosol - metabolism</subject><subject>DnaJ</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>HSC70 Heat-Shock Proteins</subject><subject>HSP40 Heat-Shock Proteins</subject><subject>Hsp70</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>membrane protein biogenesis</subject><subject>Models, Molecular</subject><subject>Pancreatic Neoplasms</subject><subject>Peptide Fragments - chemistry</subject><subject>Protein Biosynthesis</subject><subject>protein folding</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2P0zAQxSMEYsvCmRuKOHBLO2PHjnNBYqvtdlH5ECpwtJxk0rqkSbFTdvvf45LVqiChPfng33t-4zdR9BJhjJDzCW2LbjNBNZZjTHP2KBphKiFhkInH0QiYxCRFlZ9Fz7zfAIBQGT6NzhACkDMcRdfLNcXzapOwydyXGcTl2uzIdS3FO2NdXJvSNrY3PfmYjGsOse9p52PbxtPZ8ktc2G5FLXnrn0dPatN4enF3nkdfZ5fL6TxZfLq6nr5bJKVMEZLakCoyMJxVIKoUyEiZSsGQMWYq4mUlsoqTopqlFaYK0AAUgheYQa1qyc-jt4Pvbl9sqSqp7Z1p9M7ZrXEH3Rmr_75p7Vqvul8aMUPGVTB4c2fgup978r3eWl9S05iWur3XMpeYC3wYxIwhyhwD-PofcNPtXRt-QQcnJvKcH6HJAJWu895RfR8ZQR_L1H_K1Ki01Mcyg-LV6aQn_NBeANQA3NiGDg_56csPF--DEIWCIIVB6oOqXZE7ifzfOMkgsWEFbu9fM-6HlhnPhP7-8UqH_fo8W6hcf-O_Ac2Wypc</recordid><startdate>19990315</startdate><enddate>19990315</enddate><creator>Meacham, Geoffrey C.</creator><creator>Lu, Zhen</creator><creator>King, Scott</creator><creator>Sorscher, Eric</creator><creator>Tousson, Albert</creator><creator>Cyr, Douglas M.</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990315</creationdate><title>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</title><author>Meacham, Geoffrey C. ; Lu, Zhen ; King, Scott ; Sorscher, Eric ; Tousson, Albert ; Cyr, Douglas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6410-fae8b70a32d05d40ea6646521222ade3cd57d3e8ef24d14801a00b53b170f8f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Carrier Proteins - metabolism</topic><topic>cystic fibrosis transmembrane conductance regulator</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cytosol - metabolism</topic><topic>DnaJ</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>HSC70 Heat-Shock Proteins</topic><topic>HSP40 Heat-Shock Proteins</topic><topic>Hsp70</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>membrane protein biogenesis</topic><topic>Models, Molecular</topic><topic>Pancreatic Neoplasms</topic><topic>Peptide Fragments - chemistry</topic><topic>Protein Biosynthesis</topic><topic>protein folding</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meacham, Geoffrey C.</creatorcontrib><creatorcontrib>Lu, Zhen</creatorcontrib><creatorcontrib>King, Scott</creatorcontrib><creatorcontrib>Sorscher, Eric</creatorcontrib><creatorcontrib>Tousson, Albert</creatorcontrib><creatorcontrib>Cyr, Douglas M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meacham, Geoffrey C.</au><au>Lu, Zhen</au><au>King, Scott</au><au>Sorscher, Eric</au><au>Tousson, Albert</au><au>Cyr, Douglas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-03-15</date><risdate>1999</risdate><volume>18</volume><issue>6</issue><spage>1492</spage><epage>1505</epage><pages>1492-1505</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane‐spanning domains (MSDs), two nucleotide‐binding domains (NBD) and a regulatory (R) domain. The NBDs and R‐domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj‐2) is a co‐chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj‐2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and ΔF508 CFTR can be isolated in complexes with Hdj‐2 and Hsc70. The ΔF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between ΔF508 CFTR and Hdj‐2/Hsp70 were ∼2‐fold higher than those with CFTR. The earliest stage at which Hdj‐2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj‐2 and nascent CFTR was greatly reduced after expression of the R‐domain. In experiments with purified components, Hdj‐2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj‐2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj‐2/Hsc70 is the formation of an intramolecular NBD1–R‐domain complex. Whether this step is defective in the biogenesis of ΔF508 CFTR will be discussed.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10075921</pmid><doi>10.1093/emboj/18.6.1492</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 1999-03, Vol.18 (6), p.1492-1505 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171238 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Carrier Proteins - metabolism cystic fibrosis transmembrane conductance regulator Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cytosol - metabolism DnaJ Heat-Shock Proteins - metabolism HeLa Cells HSC70 Heat-Shock Proteins HSP40 Heat-Shock Proteins Hsp70 HSP70 Heat-Shock Proteins - metabolism Humans membrane protein biogenesis Models, Molecular Pancreatic Neoplasms Peptide Fragments - chemistry Protein Biosynthesis protein folding Protein Structure, Secondary Recombinant Proteins - biosynthesis Transcription, Genetic Transfection Tumor Cells, Cultured |
title | The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hdj-2/Hsc70%20chaperone%20pair%20facilitates%20early%20steps%20in%20CFTR%20biogenesis&rft.jtitle=The%20EMBO%20journal&rft.au=Meacham,%20Geoffrey%20C.&rft.date=1999-03-15&rft.volume=18&rft.issue=6&rft.spage=1492&rft.epage=1505&rft.pages=1492-1505&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.6.1492&rft_dat=%3Cproquest_pubme%3E69619518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259931&rft_id=info:pmid/10075921&rfr_iscdi=true |