Quantum state processing through controllable synthetic temporal photonic lattices
Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2025-01, Vol.19 (1), p.95-100 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 95 |
container_title | Nature photonics |
container_volume | 19 |
creator | Monika, Monika Nosrati, Farzam George, Agnes Sciara, Stefania Fazili, Riza Marques Muniz, André Luiz Bisianov, Arstan Lo Franco, Rosario Munro, William J. Chemnitz, Mario Peschel, Ulf Morandotti, Roberto |
description | Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.
A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated. |
doi_str_mv | 10.1038/s41566-024-01546-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153923081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-c86c617e52f483f093812984bfcd485229a543f0fc6bf486c90598b26f525cb73</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha0K1IEpL9AFisSmm7T-j71CCLW00kgViK4tx-NMMkrsYDtIvH2dzjAFFqxs3fP53Ht9APiM4FcEifgWKWKclxDTEiJGeUk_gBNUUVlSIcnR4S7YApzGuIWQEYnxR7AgspIIInoC7m4n7dI0FDHpZIsxeGNj7NymSG3w06YtjHcp-L7XdW-L-ORSa1NnimSH0QfdF2Prk3e50uuUBRs_geNG99Ge7c8l-PPj-_31z3L1--bX9dWqNAThVBrBDUeVZbihgjRQEoGwFLRuzJoKhrHUjOZ6Y3idCW4kZFLUmDcMM1NXZAkud77jVA92bWyeU_dqDN2gw5PyulOvFde1auMfFUIV5FVFs8OXvUPwD5ONSQ1dNDbv6qyfoiJo_jACBcroxRt066fg8n4zhQnniM8U3lEm-BiDbQ7TIKjmzNQuM5UzU_8yU_MU5y_3ODx5DikDZAfELLmNDf97v2P7F2ogo3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152366161</pqid></control><display><type>article</type><title>Quantum state processing through controllable synthetic temporal photonic lattices</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Monika, Monika ; Nosrati, Farzam ; George, Agnes ; Sciara, Stefania ; Fazili, Riza ; Marques Muniz, André Luiz ; Bisianov, Arstan ; Lo Franco, Rosario ; Munro, William J. ; Chemnitz, Mario ; Peschel, Ulf ; Morandotti, Roberto</creator><creatorcontrib>Monika, Monika ; Nosrati, Farzam ; George, Agnes ; Sciara, Stefania ; Fazili, Riza ; Marques Muniz, André Luiz ; Bisianov, Arstan ; Lo Franco, Rosario ; Munro, William J. ; Chemnitz, Mario ; Peschel, Ulf ; Morandotti, Roberto</creatorcontrib><description>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.
A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-024-01546-4</identifier><identifier>PMID: 39791014</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; 639/624/400/482 ; Applied and Technical Physics ; Circuits ; Controllability ; Data processing ; Information processing ; Lasers ; Lattice design ; Lattices ; Microprocessors ; Photonics ; Photons ; Physics ; Physics and Astronomy ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Quantum Physics</subject><ispartof>Nature photonics, 2025-01, Vol.19 (1), p.95-100</ispartof><rights>Crown 2024</rights><rights>Crown 2024.</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><rights>Crown 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-c86c617e52f483f093812984bfcd485229a543f0fc6bf486c90598b26f525cb73</cites><orcidid>0000-0001-6986-9212 ; 0000-0002-4740-9343 ; 0000-0001-7717-1519 ; 0000-0002-3281-0935 ; 0000-0002-3980-9224 ; 0000-0003-1835-2250 ; 0000-0002-8340-7214 ; 0000-0002-0372-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-024-01546-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-024-01546-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39791014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monika, Monika</creatorcontrib><creatorcontrib>Nosrati, Farzam</creatorcontrib><creatorcontrib>George, Agnes</creatorcontrib><creatorcontrib>Sciara, Stefania</creatorcontrib><creatorcontrib>Fazili, Riza</creatorcontrib><creatorcontrib>Marques Muniz, André Luiz</creatorcontrib><creatorcontrib>Bisianov, Arstan</creatorcontrib><creatorcontrib>Lo Franco, Rosario</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Chemnitz, Mario</creatorcontrib><creatorcontrib>Peschel, Ulf</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><title>Quantum state processing through controllable synthetic temporal photonic lattices</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><addtitle>Nat Photonics</addtitle><description>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.
A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.</description><subject>639/624/1075/187</subject><subject>639/624/400/482</subject><subject>Applied and Technical Physics</subject><subject>Circuits</subject><subject>Controllability</subject><subject>Data processing</subject><subject>Information processing</subject><subject>Lasers</subject><subject>Lattice design</subject><subject>Lattices</subject><subject>Microprocessors</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1O3DAUha0K1IEpL9AFisSmm7T-j71CCLW00kgViK4tx-NMMkrsYDtIvH2dzjAFFqxs3fP53Ht9APiM4FcEifgWKWKclxDTEiJGeUk_gBNUUVlSIcnR4S7YApzGuIWQEYnxR7AgspIIInoC7m4n7dI0FDHpZIsxeGNj7NymSG3w06YtjHcp-L7XdW-L-ORSa1NnimSH0QfdF2Prk3e50uuUBRs_geNG99Ge7c8l-PPj-_31z3L1--bX9dWqNAThVBrBDUeVZbihgjRQEoGwFLRuzJoKhrHUjOZ6Y3idCW4kZFLUmDcMM1NXZAkud77jVA92bWyeU_dqDN2gw5PyulOvFde1auMfFUIV5FVFs8OXvUPwD5ONSQ1dNDbv6qyfoiJo_jACBcroxRt066fg8n4zhQnniM8U3lEm-BiDbQ7TIKjmzNQuM5UzU_8yU_MU5y_3ODx5DikDZAfELLmNDf97v2P7F2ogo3w</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Monika, Monika</creator><creator>Nosrati, Farzam</creator><creator>George, Agnes</creator><creator>Sciara, Stefania</creator><creator>Fazili, Riza</creator><creator>Marques Muniz, André Luiz</creator><creator>Bisianov, Arstan</creator><creator>Lo Franco, Rosario</creator><creator>Munro, William J.</creator><creator>Chemnitz, Mario</creator><creator>Peschel, Ulf</creator><creator>Morandotti, Roberto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6986-9212</orcidid><orcidid>https://orcid.org/0000-0002-4740-9343</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><orcidid>https://orcid.org/0000-0002-3281-0935</orcidid><orcidid>https://orcid.org/0000-0002-3980-9224</orcidid><orcidid>https://orcid.org/0000-0003-1835-2250</orcidid><orcidid>https://orcid.org/0000-0002-8340-7214</orcidid><orcidid>https://orcid.org/0000-0002-0372-4114</orcidid></search><sort><creationdate>20250101</creationdate><title>Quantum state processing through controllable synthetic temporal photonic lattices</title><author>Monika, Monika ; Nosrati, Farzam ; George, Agnes ; Sciara, Stefania ; Fazili, Riza ; Marques Muniz, André Luiz ; Bisianov, Arstan ; Lo Franco, Rosario ; Munro, William J. ; Chemnitz, Mario ; Peschel, Ulf ; Morandotti, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-c86c617e52f483f093812984bfcd485229a543f0fc6bf486c90598b26f525cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/624/1075/187</topic><topic>639/624/400/482</topic><topic>Applied and Technical Physics</topic><topic>Circuits</topic><topic>Controllability</topic><topic>Data processing</topic><topic>Information processing</topic><topic>Lasers</topic><topic>Lattice design</topic><topic>Lattices</topic><topic>Microprocessors</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monika, Monika</creatorcontrib><creatorcontrib>Nosrati, Farzam</creatorcontrib><creatorcontrib>George, Agnes</creatorcontrib><creatorcontrib>Sciara, Stefania</creatorcontrib><creatorcontrib>Fazili, Riza</creatorcontrib><creatorcontrib>Marques Muniz, André Luiz</creatorcontrib><creatorcontrib>Bisianov, Arstan</creatorcontrib><creatorcontrib>Lo Franco, Rosario</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Chemnitz, Mario</creatorcontrib><creatorcontrib>Peschel, Ulf</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monika, Monika</au><au>Nosrati, Farzam</au><au>George, Agnes</au><au>Sciara, Stefania</au><au>Fazili, Riza</au><au>Marques Muniz, André Luiz</au><au>Bisianov, Arstan</au><au>Lo Franco, Rosario</au><au>Munro, William J.</au><au>Chemnitz, Mario</au><au>Peschel, Ulf</au><au>Morandotti, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum state processing through controllable synthetic temporal photonic lattices</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><addtitle>Nat Photonics</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>19</volume><issue>1</issue><spage>95</spage><epage>100</epage><pages>95-100</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.
A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39791014</pmid><doi>10.1038/s41566-024-01546-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6986-9212</orcidid><orcidid>https://orcid.org/0000-0002-4740-9343</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><orcidid>https://orcid.org/0000-0002-3281-0935</orcidid><orcidid>https://orcid.org/0000-0002-3980-9224</orcidid><orcidid>https://orcid.org/0000-0003-1835-2250</orcidid><orcidid>https://orcid.org/0000-0002-8340-7214</orcidid><orcidid>https://orcid.org/0000-0002-0372-4114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2025-01, Vol.19 (1), p.95-100 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706774 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/624/1075/187 639/624/400/482 Applied and Technical Physics Circuits Controllability Data processing Information processing Lasers Lattice design Lattices Microprocessors Photonics Photons Physics Physics and Astronomy Quantum computing Quantum entanglement Quantum phenomena Quantum Physics |
title | Quantum state processing through controllable synthetic temporal photonic lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20state%20processing%20through%20controllable%20synthetic%20temporal%20photonic%20lattices&rft.jtitle=Nature%20photonics&rft.au=Monika,%20Monika&rft.date=2025-01-01&rft.volume=19&rft.issue=1&rft.spage=95&rft.epage=100&rft.pages=95-100&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-024-01546-4&rft_dat=%3Cproquest_pubme%3E3153923081%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152366161&rft_id=info:pmid/39791014&rfr_iscdi=true |