Quantum state processing through controllable synthetic temporal photonic lattices

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2025-01, Vol.19 (1), p.95-100
Hauptverfasser: Monika, Monika, Nosrati, Farzam, George, Agnes, Sciara, Stefania, Fazili, Riza, Marques Muniz, André Luiz, Bisianov, Arstan, Lo Franco, Rosario, Munro, William J., Chemnitz, Mario, Peschel, Ulf, Morandotti, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 95
container_title Nature photonics
container_volume 19
creator Monika, Monika
Nosrati, Farzam
George, Agnes
Sciara, Stefania
Fazili, Riza
Marques Muniz, André Luiz
Bisianov, Arstan
Lo Franco, Rosario
Munro, William J.
Chemnitz, Mario
Peschel, Ulf
Morandotti, Roberto
description Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup. A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.
doi_str_mv 10.1038/s41566-024-01546-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153923081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-c86c617e52f483f093812984bfcd485229a543f0fc6bf486c90598b26f525cb73</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha0K1IEpL9AFisSmm7T-j71CCLW00kgViK4tx-NMMkrsYDtIvH2dzjAFFqxs3fP53Ht9APiM4FcEifgWKWKclxDTEiJGeUk_gBNUUVlSIcnR4S7YApzGuIWQEYnxR7AgspIIInoC7m4n7dI0FDHpZIsxeGNj7NymSG3w06YtjHcp-L7XdW-L-ORSa1NnimSH0QfdF2Prk3e50uuUBRs_geNG99Ge7c8l-PPj-_31z3L1--bX9dWqNAThVBrBDUeVZbihgjRQEoGwFLRuzJoKhrHUjOZ6Y3idCW4kZFLUmDcMM1NXZAkud77jVA92bWyeU_dqDN2gw5PyulOvFde1auMfFUIV5FVFs8OXvUPwD5ONSQ1dNDbv6qyfoiJo_jACBcroxRt066fg8n4zhQnniM8U3lEm-BiDbQ7TIKjmzNQuM5UzU_8yU_MU5y_3ODx5DikDZAfELLmNDf97v2P7F2ogo3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152366161</pqid></control><display><type>article</type><title>Quantum state processing through controllable synthetic temporal photonic lattices</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Monika, Monika ; Nosrati, Farzam ; George, Agnes ; Sciara, Stefania ; Fazili, Riza ; Marques Muniz, André Luiz ; Bisianov, Arstan ; Lo Franco, Rosario ; Munro, William J. ; Chemnitz, Mario ; Peschel, Ulf ; Morandotti, Roberto</creator><creatorcontrib>Monika, Monika ; Nosrati, Farzam ; George, Agnes ; Sciara, Stefania ; Fazili, Riza ; Marques Muniz, André Luiz ; Bisianov, Arstan ; Lo Franco, Rosario ; Munro, William J. ; Chemnitz, Mario ; Peschel, Ulf ; Morandotti, Roberto</creatorcontrib><description>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup. A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-024-01546-4</identifier><identifier>PMID: 39791014</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; 639/624/400/482 ; Applied and Technical Physics ; Circuits ; Controllability ; Data processing ; Information processing ; Lasers ; Lattice design ; Lattices ; Microprocessors ; Photonics ; Photons ; Physics ; Physics and Astronomy ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Quantum Physics</subject><ispartof>Nature photonics, 2025-01, Vol.19 (1), p.95-100</ispartof><rights>Crown 2024</rights><rights>Crown 2024.</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><rights>Crown 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-c86c617e52f483f093812984bfcd485229a543f0fc6bf486c90598b26f525cb73</cites><orcidid>0000-0001-6986-9212 ; 0000-0002-4740-9343 ; 0000-0001-7717-1519 ; 0000-0002-3281-0935 ; 0000-0002-3980-9224 ; 0000-0003-1835-2250 ; 0000-0002-8340-7214 ; 0000-0002-0372-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-024-01546-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-024-01546-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39791014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monika, Monika</creatorcontrib><creatorcontrib>Nosrati, Farzam</creatorcontrib><creatorcontrib>George, Agnes</creatorcontrib><creatorcontrib>Sciara, Stefania</creatorcontrib><creatorcontrib>Fazili, Riza</creatorcontrib><creatorcontrib>Marques Muniz, André Luiz</creatorcontrib><creatorcontrib>Bisianov, Arstan</creatorcontrib><creatorcontrib>Lo Franco, Rosario</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Chemnitz, Mario</creatorcontrib><creatorcontrib>Peschel, Ulf</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><title>Quantum state processing through controllable synthetic temporal photonic lattices</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><addtitle>Nat Photonics</addtitle><description>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup. A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.</description><subject>639/624/1075/187</subject><subject>639/624/400/482</subject><subject>Applied and Technical Physics</subject><subject>Circuits</subject><subject>Controllability</subject><subject>Data processing</subject><subject>Information processing</subject><subject>Lasers</subject><subject>Lattice design</subject><subject>Lattices</subject><subject>Microprocessors</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1O3DAUha0K1IEpL9AFisSmm7T-j71CCLW00kgViK4tx-NMMkrsYDtIvH2dzjAFFqxs3fP53Ht9APiM4FcEifgWKWKclxDTEiJGeUk_gBNUUVlSIcnR4S7YApzGuIWQEYnxR7AgspIIInoC7m4n7dI0FDHpZIsxeGNj7NymSG3w06YtjHcp-L7XdW-L-ORSa1NnimSH0QfdF2Prk3e50uuUBRs_geNG99Ge7c8l-PPj-_31z3L1--bX9dWqNAThVBrBDUeVZbihgjRQEoGwFLRuzJoKhrHUjOZ6Y3idCW4kZFLUmDcMM1NXZAkud77jVA92bWyeU_dqDN2gw5PyulOvFde1auMfFUIV5FVFs8OXvUPwD5ONSQ1dNDbv6qyfoiJo_jACBcroxRt066fg8n4zhQnniM8U3lEm-BiDbQ7TIKjmzNQuM5UzU_8yU_MU5y_3ODx5DikDZAfELLmNDf97v2P7F2ogo3w</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Monika, Monika</creator><creator>Nosrati, Farzam</creator><creator>George, Agnes</creator><creator>Sciara, Stefania</creator><creator>Fazili, Riza</creator><creator>Marques Muniz, André Luiz</creator><creator>Bisianov, Arstan</creator><creator>Lo Franco, Rosario</creator><creator>Munro, William J.</creator><creator>Chemnitz, Mario</creator><creator>Peschel, Ulf</creator><creator>Morandotti, Roberto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6986-9212</orcidid><orcidid>https://orcid.org/0000-0002-4740-9343</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><orcidid>https://orcid.org/0000-0002-3281-0935</orcidid><orcidid>https://orcid.org/0000-0002-3980-9224</orcidid><orcidid>https://orcid.org/0000-0003-1835-2250</orcidid><orcidid>https://orcid.org/0000-0002-8340-7214</orcidid><orcidid>https://orcid.org/0000-0002-0372-4114</orcidid></search><sort><creationdate>20250101</creationdate><title>Quantum state processing through controllable synthetic temporal photonic lattices</title><author>Monika, Monika ; Nosrati, Farzam ; George, Agnes ; Sciara, Stefania ; Fazili, Riza ; Marques Muniz, André Luiz ; Bisianov, Arstan ; Lo Franco, Rosario ; Munro, William J. ; Chemnitz, Mario ; Peschel, Ulf ; Morandotti, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-c86c617e52f483f093812984bfcd485229a543f0fc6bf486c90598b26f525cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/624/1075/187</topic><topic>639/624/400/482</topic><topic>Applied and Technical Physics</topic><topic>Circuits</topic><topic>Controllability</topic><topic>Data processing</topic><topic>Information processing</topic><topic>Lasers</topic><topic>Lattice design</topic><topic>Lattices</topic><topic>Microprocessors</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monika, Monika</creatorcontrib><creatorcontrib>Nosrati, Farzam</creatorcontrib><creatorcontrib>George, Agnes</creatorcontrib><creatorcontrib>Sciara, Stefania</creatorcontrib><creatorcontrib>Fazili, Riza</creatorcontrib><creatorcontrib>Marques Muniz, André Luiz</creatorcontrib><creatorcontrib>Bisianov, Arstan</creatorcontrib><creatorcontrib>Lo Franco, Rosario</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Chemnitz, Mario</creatorcontrib><creatorcontrib>Peschel, Ulf</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monika, Monika</au><au>Nosrati, Farzam</au><au>George, Agnes</au><au>Sciara, Stefania</au><au>Fazili, Riza</au><au>Marques Muniz, André Luiz</au><au>Bisianov, Arstan</au><au>Lo Franco, Rosario</au><au>Munro, William J.</au><au>Chemnitz, Mario</au><au>Peschel, Ulf</au><au>Morandotti, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum state processing through controllable synthetic temporal photonic lattices</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><addtitle>Nat Photonics</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>19</volume><issue>1</issue><spage>95</spage><epage>100</epage><pages>95-100</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup. A scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices is realized on a fibre-coupled loop system. Key fundamental quantum operations are demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39791014</pmid><doi>10.1038/s41566-024-01546-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6986-9212</orcidid><orcidid>https://orcid.org/0000-0002-4740-9343</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><orcidid>https://orcid.org/0000-0002-3281-0935</orcidid><orcidid>https://orcid.org/0000-0002-3980-9224</orcidid><orcidid>https://orcid.org/0000-0003-1835-2250</orcidid><orcidid>https://orcid.org/0000-0002-8340-7214</orcidid><orcidid>https://orcid.org/0000-0002-0372-4114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2025-01, Vol.19 (1), p.95-100
issn 1749-4885
1749-4893
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11706774
source SpringerLink Journals; Nature Journals Online
subjects 639/624/1075/187
639/624/400/482
Applied and Technical Physics
Circuits
Controllability
Data processing
Information processing
Lasers
Lattice design
Lattices
Microprocessors
Photonics
Photons
Physics
Physics and Astronomy
Quantum computing
Quantum entanglement
Quantum phenomena
Quantum Physics
title Quantum state processing through controllable synthetic temporal photonic lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20state%20processing%20through%20controllable%20synthetic%20temporal%20photonic%20lattices&rft.jtitle=Nature%20photonics&rft.au=Monika,%20Monika&rft.date=2025-01-01&rft.volume=19&rft.issue=1&rft.spage=95&rft.epage=100&rft.pages=95-100&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-024-01546-4&rft_dat=%3Cproquest_pubme%3E3153923081%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152366161&rft_id=info:pmid/39791014&rfr_iscdi=true