Model‐based interspecies interpretation of botulinum neurotoxin type A on muscle‐contraction inhibition

Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopharmaceutics & drug disposition 2024-12, Vol.45 (4-6), p.190-200
Hauptverfasser: Ryu, Hyo‐jeong, Kwak, Seongsung, Park, Misun, Yun, Hwi‐yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 4-6
container_start_page 190
container_title Biopharmaceutics & drug disposition
container_volume 45
creator Ryu, Hyo‐jeong
Kwak, Seongsung
Park, Misun
Yun, Hwi‐yeol
description Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic‐pharmacodynamic (K‐PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague‐Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle‐contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness‐of‐fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose‐dependent, with recovery times varying depending on the administered dose. The final K‐PD model effectively characterized the data and provided insights into species‐specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK‐PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products. This study addresses the challenges in evaluating botulinum neurotoxin type A (BoNT/A) efficacy and understanding species‐specific responses. By developing a kinetic‐pharmacodynamic (K‐PD) model, it interprets muscle function data from animal studies, offering insights into BoNT/A effects and potential applications in humans. This approach enhances translational relevance and may improve therapeutic outcomes for conditions involving muscle spasticity.
doi_str_mv 10.1002/bdd.2398
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11687410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082958441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2968-371d3bf47278f627df402cc40e203d3c1399a4aaf86cc8f03dab13a4ad7ec6793</originalsourceid><addsrcrecordid>eNp1kc1OFTEYhhuikSOYcAVmEjduBr62w0y7MggIJBg2mLhrOu03Upxpx3ZGOTsvwWvkSujhIP4krPr39MnbvoTsUNilAGyvtXaXcSk2yIKClCUI-vkZWQCtWMkawTbJy5SuAaCmlL4gm1wCp_tSLsjXj8Fif_vzV6sT2sL5CWMa0ThM68UYcdKTC74IXdGGae6dn4fC4xzDFG6cL6bliMVBkYlhTqbHLDPBT1Gb-2vOX7nWrabb5Hmn-4SvHsYt8unD8eXhaXl-cXJ2eHBeGiZrUfKGWt52VZOTdzVrbFcBM6YCZMAtN5RLqSutO1EbI7q8p1vK845t0NSN5Fvk3do7zu2A1uAqTK_G6AYdlypop_498e5KfQnfFaW1aCoK2fD2wRDDtxnTpAaXDPa99hjmpDgIJvdFVdGMvvkPvQ5z9Pl9Kn8xcA6M1X-EJoaUInaPaSioVYUqV6hWFWb09d_pH8HfnWWgXAM_XI_LJ0Xq_dHRvfAOeMip8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150330226</pqid></control><display><type>article</type><title>Model‐based interspecies interpretation of botulinum neurotoxin type A on muscle‐contraction inhibition</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ryu, Hyo‐jeong ; Kwak, Seongsung ; Park, Misun ; Yun, Hwi‐yeol</creator><creatorcontrib>Ryu, Hyo‐jeong ; Kwak, Seongsung ; Park, Misun ; Yun, Hwi‐yeol</creatorcontrib><description>Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic‐pharmacodynamic (K‐PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague‐Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle‐contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness‐of‐fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose‐dependent, with recovery times varying depending on the administered dose. The final K‐PD model effectively characterized the data and provided insights into species‐specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK‐PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products. This study addresses the challenges in evaluating botulinum neurotoxin type A (BoNT/A) efficacy and understanding species‐specific responses. By developing a kinetic‐pharmacodynamic (K‐PD) model, it interprets muscle function data from animal studies, offering insights into BoNT/A effects and potential applications in humans. This approach enhances translational relevance and may improve therapeutic outcomes for conditions involving muscle spasticity.</description><identifier>ISSN: 0142-2782</identifier><identifier>ISSN: 1099-081X</identifier><identifier>EISSN: 1099-081X</identifier><identifier>DOI: 10.1002/bdd.2398</identifier><identifier>PMID: 39031599</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Action potential ; Action Potentials - drug effects ; Animal models ; Animals ; botulinum neurotoxin type A ; Botulinum toxin ; Botulinum Toxins, Type A - pharmacokinetics ; Botulinum Toxins, Type A - pharmacology ; Female ; kinetic‐pharmacodynamic (K‐PD) model ; Medical research ; Mice ; Models, Biological ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; muscle‐contraction inhibition ; Neuromuscular Agents - pharmacokinetics ; Neuromuscular Agents - pharmacology ; Neurotoxins ; Original ; pharmacodynamic ; Pharmacodynamics ; pharmacokinetic ; Pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Species Specificity</subject><ispartof>Biopharmaceutics &amp; drug disposition, 2024-12, Vol.45 (4-6), p.190-200</ispartof><rights>2024 The Author(s). Biopharmaceutics &amp; Drug Disposition published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2968-371d3bf47278f627df402cc40e203d3c1399a4aaf86cc8f03dab13a4ad7ec6793</cites><orcidid>0000-0002-2317-8894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbdd.2398$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbdd.2398$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39031599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryu, Hyo‐jeong</creatorcontrib><creatorcontrib>Kwak, Seongsung</creatorcontrib><creatorcontrib>Park, Misun</creatorcontrib><creatorcontrib>Yun, Hwi‐yeol</creatorcontrib><title>Model‐based interspecies interpretation of botulinum neurotoxin type A on muscle‐contraction inhibition</title><title>Biopharmaceutics &amp; drug disposition</title><addtitle>Biopharm Drug Dispos</addtitle><description>Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic‐pharmacodynamic (K‐PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague‐Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle‐contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness‐of‐fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose‐dependent, with recovery times varying depending on the administered dose. The final K‐PD model effectively characterized the data and provided insights into species‐specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK‐PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products. This study addresses the challenges in evaluating botulinum neurotoxin type A (BoNT/A) efficacy and understanding species‐specific responses. By developing a kinetic‐pharmacodynamic (K‐PD) model, it interprets muscle function data from animal studies, offering insights into BoNT/A effects and potential applications in humans. This approach enhances translational relevance and may improve therapeutic outcomes for conditions involving muscle spasticity.</description><subject>Action potential</subject><subject>Action Potentials - drug effects</subject><subject>Animal models</subject><subject>Animals</subject><subject>botulinum neurotoxin type A</subject><subject>Botulinum toxin</subject><subject>Botulinum Toxins, Type A - pharmacokinetics</subject><subject>Botulinum Toxins, Type A - pharmacology</subject><subject>Female</subject><subject>kinetic‐pharmacodynamic (K‐PD) model</subject><subject>Medical research</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>muscle‐contraction inhibition</subject><subject>Neuromuscular Agents - pharmacokinetics</subject><subject>Neuromuscular Agents - pharmacology</subject><subject>Neurotoxins</subject><subject>Original</subject><subject>pharmacodynamic</subject><subject>Pharmacodynamics</subject><subject>pharmacokinetic</subject><subject>Pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Species Specificity</subject><issn>0142-2782</issn><issn>1099-081X</issn><issn>1099-081X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1OFTEYhhuikSOYcAVmEjduBr62w0y7MggIJBg2mLhrOu03Upxpx3ZGOTsvwWvkSujhIP4krPr39MnbvoTsUNilAGyvtXaXcSk2yIKClCUI-vkZWQCtWMkawTbJy5SuAaCmlL4gm1wCp_tSLsjXj8Fif_vzV6sT2sL5CWMa0ThM68UYcdKTC74IXdGGae6dn4fC4xzDFG6cL6bliMVBkYlhTqbHLDPBT1Gb-2vOX7nWrabb5Hmn-4SvHsYt8unD8eXhaXl-cXJ2eHBeGiZrUfKGWt52VZOTdzVrbFcBM6YCZMAtN5RLqSutO1EbI7q8p1vK845t0NSN5Fvk3do7zu2A1uAqTK_G6AYdlypop_498e5KfQnfFaW1aCoK2fD2wRDDtxnTpAaXDPa99hjmpDgIJvdFVdGMvvkPvQ5z9Pl9Kn8xcA6M1X-EJoaUInaPaSioVYUqV6hWFWb09d_pH8HfnWWgXAM_XI_LJ0Xq_dHRvfAOeMip8Q</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Ryu, Hyo‐jeong</creator><creator>Kwak, Seongsung</creator><creator>Park, Misun</creator><creator>Yun, Hwi‐yeol</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2317-8894</orcidid></search><sort><creationdate>202412</creationdate><title>Model‐based interspecies interpretation of botulinum neurotoxin type A on muscle‐contraction inhibition</title><author>Ryu, Hyo‐jeong ; Kwak, Seongsung ; Park, Misun ; Yun, Hwi‐yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2968-371d3bf47278f627df402cc40e203d3c1399a4aaf86cc8f03dab13a4ad7ec6793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action potential</topic><topic>Action Potentials - drug effects</topic><topic>Animal models</topic><topic>Animals</topic><topic>botulinum neurotoxin type A</topic><topic>Botulinum toxin</topic><topic>Botulinum Toxins, Type A - pharmacokinetics</topic><topic>Botulinum Toxins, Type A - pharmacology</topic><topic>Female</topic><topic>kinetic‐pharmacodynamic (K‐PD) model</topic><topic>Medical research</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>muscle‐contraction inhibition</topic><topic>Neuromuscular Agents - pharmacokinetics</topic><topic>Neuromuscular Agents - pharmacology</topic><topic>Neurotoxins</topic><topic>Original</topic><topic>pharmacodynamic</topic><topic>Pharmacodynamics</topic><topic>pharmacokinetic</topic><topic>Pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Hyo‐jeong</creatorcontrib><creatorcontrib>Kwak, Seongsung</creatorcontrib><creatorcontrib>Park, Misun</creatorcontrib><creatorcontrib>Yun, Hwi‐yeol</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biopharmaceutics &amp; drug disposition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Hyo‐jeong</au><au>Kwak, Seongsung</au><au>Park, Misun</au><au>Yun, Hwi‐yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model‐based interspecies interpretation of botulinum neurotoxin type A on muscle‐contraction inhibition</atitle><jtitle>Biopharmaceutics &amp; drug disposition</jtitle><addtitle>Biopharm Drug Dispos</addtitle><date>2024-12</date><risdate>2024</risdate><volume>45</volume><issue>4-6</issue><spage>190</spage><epage>200</epage><pages>190-200</pages><issn>0142-2782</issn><issn>1099-081X</issn><eissn>1099-081X</eissn><abstract>Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic‐pharmacodynamic (K‐PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague‐Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle‐contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness‐of‐fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose‐dependent, with recovery times varying depending on the administered dose. The final K‐PD model effectively characterized the data and provided insights into species‐specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK‐PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products. This study addresses the challenges in evaluating botulinum neurotoxin type A (BoNT/A) efficacy and understanding species‐specific responses. By developing a kinetic‐pharmacodynamic (K‐PD) model, it interprets muscle function data from animal studies, offering insights into BoNT/A effects and potential applications in humans. This approach enhances translational relevance and may improve therapeutic outcomes for conditions involving muscle spasticity.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39031599</pmid><doi>10.1002/bdd.2398</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2317-8894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-2782
ispartof Biopharmaceutics & drug disposition, 2024-12, Vol.45 (4-6), p.190-200
issn 0142-2782
1099-081X
1099-081X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11687410
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Action potential
Action Potentials - drug effects
Animal models
Animals
botulinum neurotoxin type A
Botulinum toxin
Botulinum Toxins, Type A - pharmacokinetics
Botulinum Toxins, Type A - pharmacology
Female
kinetic‐pharmacodynamic (K‐PD) model
Medical research
Mice
Models, Biological
Muscle contraction
Muscle Contraction - drug effects
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
muscle‐contraction inhibition
Neuromuscular Agents - pharmacokinetics
Neuromuscular Agents - pharmacology
Neurotoxins
Original
pharmacodynamic
Pharmacodynamics
pharmacokinetic
Pharmacokinetics
Rats
Rats, Sprague-Dawley
Species Specificity
title Model‐based interspecies interpretation of botulinum neurotoxin type A on muscle‐contraction inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%E2%80%90based%20interspecies%20interpretation%20of%20botulinum%20neurotoxin%20type%20A%20on%20muscle%E2%80%90contraction%20inhibition&rft.jtitle=Biopharmaceutics%20&%20drug%20disposition&rft.au=Ryu,%20Hyo%E2%80%90jeong&rft.date=2024-12&rft.volume=45&rft.issue=4-6&rft.spage=190&rft.epage=200&rft.pages=190-200&rft.issn=0142-2782&rft.eissn=1099-081X&rft_id=info:doi/10.1002/bdd.2398&rft_dat=%3Cproquest_pubme%3E3082958441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150330226&rft_id=info:pmid/39031599&rfr_iscdi=true