Structural insights into how Cas9 targets nucleosomes
The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previou...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-12, Vol.15 (1), p.10744, Article 10744 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 10744 |
container_title | Nature communications |
container_volume | 15 |
creator | Nagamura, Reina Kujirai, Tomoya Kato, Junko Shuto, Yutaro Kusakizako, Tsukasa Hirano, Hisato Endo, Masaki Toki, Seiichi Saika, Hiroaki Kurumizaka, Hitoshi Nureki, Osamu |
description | The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin. |
doi_str_mv | 10.1038/s41467-024-54768-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11685650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150202207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227z-961e0a0f11eb2e67ea16e86480efc75b9ec16fb5b7ff3d0455ef4f562ee644673</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMottT-ARdScONmNO_MrESKLyi4UNchM71pp0wnNZlR7K83fVirC7PJJfe7J_dwEDol-JJgll4FTrhUCaY8EVzJNFkeoC7FnCREUXa4V3dQP4QZjodlJOX8GHVYppjKUt5F4rnxbdG03lSDsg7lZNqEWDRuMHUfg6EJ2aAxfgLxtW6LClxwcwgn6MiaKkB_e_fQ693ty_AhGT3dPw5vRklBqVommSSADbaEQE5BKjBEQip5isEWSuQZFETaXOTKWjbGXAiw3ApJASSP7lgPXW90F20-h3EBdRMX1Qtfzo3_1M6U-nenLqd64t41ITIVUuCocLFV8O6thdDoeRkKqCpTg2uDZiRCXErKInr-B5251tfR35qimFK8WoluqMK7EDzY3TYE61UyepOMjsnodTJ6GYfO9n3sRr5ziADbACG26gn4n7__kf0CfIyaCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150202207</pqid></control><display><type>article</type><title>Structural insights into how Cas9 targets nucleosomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Nagamura, Reina ; Kujirai, Tomoya ; Kato, Junko ; Shuto, Yutaro ; Kusakizako, Tsukasa ; Hirano, Hisato ; Endo, Masaki ; Toki, Seiichi ; Saika, Hiroaki ; Kurumizaka, Hitoshi ; Nureki, Osamu</creator><creatorcontrib>Nagamura, Reina ; Kujirai, Tomoya ; Kato, Junko ; Shuto, Yutaro ; Kusakizako, Tsukasa ; Hirano, Hisato ; Endo, Masaki ; Toki, Seiichi ; Saika, Hiroaki ; Kurumizaka, Hitoshi ; Nureki, Osamu</creatorcontrib><description>The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-54768-z</identifier><identifier>PMID: 39737984</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 45 ; 631/337/4041/3196 ; 631/535/1258/1259 ; Chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; CRISPR ; CRISPR-Associated Protein 9 - chemistry ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA Cleavage ; DNA structure ; Editing ; Electron microscopy ; Electrophoresis ; Endonuclease ; Eukaryotes ; Gene Editing ; Genetic engineering ; Genome editing ; Histones ; Histones - chemistry ; Histones - metabolism ; Humanities and Social Sciences ; Models, Molecular ; multidisciplinary ; Nucleosomes ; Nucleosomes - metabolism ; Nucleosomes - ultrastructure ; Polyacrylamide ; Prokaryotes ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10744, Article 10744</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227z-961e0a0f11eb2e67ea16e86480efc75b9ec16fb5b7ff3d0455ef4f562ee644673</cites><orcidid>0009-0007-8710-4134 ; 0000-0002-6186-6647 ; 0000-0001-7412-3722 ; 0000-0003-1813-7008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685650/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685650/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39737984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagamura, Reina</creatorcontrib><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Kato, Junko</creatorcontrib><creatorcontrib>Shuto, Yutaro</creatorcontrib><creatorcontrib>Kusakizako, Tsukasa</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Endo, Masaki</creatorcontrib><creatorcontrib>Toki, Seiichi</creatorcontrib><creatorcontrib>Saika, Hiroaki</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><title>Structural insights into how Cas9 targets nucleosomes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.</description><subject>101/28</subject><subject>45</subject><subject>631/337/4041/3196</subject><subject>631/535/1258/1259</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - chemistry</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Cleavage</subject><subject>DNA structure</subject><subject>Editing</subject><subject>Electron microscopy</subject><subject>Electrophoresis</subject><subject>Endonuclease</subject><subject>Eukaryotes</subject><subject>Gene Editing</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Nucleosomes</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleosomes - ultrastructure</subject><subject>Polyacrylamide</subject><subject>Prokaryotes</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMottT-ARdScONmNO_MrESKLyi4UNchM71pp0wnNZlR7K83fVirC7PJJfe7J_dwEDol-JJgll4FTrhUCaY8EVzJNFkeoC7FnCREUXa4V3dQP4QZjodlJOX8GHVYppjKUt5F4rnxbdG03lSDsg7lZNqEWDRuMHUfg6EJ2aAxfgLxtW6LClxwcwgn6MiaKkB_e_fQ693ty_AhGT3dPw5vRklBqVommSSADbaEQE5BKjBEQip5isEWSuQZFETaXOTKWjbGXAiw3ApJASSP7lgPXW90F20-h3EBdRMX1Qtfzo3_1M6U-nenLqd64t41ITIVUuCocLFV8O6thdDoeRkKqCpTg2uDZiRCXErKInr-B5251tfR35qimFK8WoluqMK7EDzY3TYE61UyepOMjsnodTJ6GYfO9n3sRr5ziADbACG26gn4n7__kf0CfIyaCA</recordid><startdate>20241230</startdate><enddate>20241230</enddate><creator>Nagamura, Reina</creator><creator>Kujirai, Tomoya</creator><creator>Kato, Junko</creator><creator>Shuto, Yutaro</creator><creator>Kusakizako, Tsukasa</creator><creator>Hirano, Hisato</creator><creator>Endo, Masaki</creator><creator>Toki, Seiichi</creator><creator>Saika, Hiroaki</creator><creator>Kurumizaka, Hitoshi</creator><creator>Nureki, Osamu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-8710-4134</orcidid><orcidid>https://orcid.org/0000-0002-6186-6647</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid></search><sort><creationdate>20241230</creationdate><title>Structural insights into how Cas9 targets nucleosomes</title><author>Nagamura, Reina ; Kujirai, Tomoya ; Kato, Junko ; Shuto, Yutaro ; Kusakizako, Tsukasa ; Hirano, Hisato ; Endo, Masaki ; Toki, Seiichi ; Saika, Hiroaki ; Kurumizaka, Hitoshi ; Nureki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227z-961e0a0f11eb2e67ea16e86480efc75b9ec16fb5b7ff3d0455ef4f562ee644673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>45</topic><topic>631/337/4041/3196</topic><topic>631/535/1258/1259</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - chemistry</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Cleavage</topic><topic>DNA structure</topic><topic>Editing</topic><topic>Electron microscopy</topic><topic>Electrophoresis</topic><topic>Endonuclease</topic><topic>Eukaryotes</topic><topic>Gene Editing</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Nucleosomes</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleosomes - ultrastructure</topic><topic>Polyacrylamide</topic><topic>Prokaryotes</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagamura, Reina</creatorcontrib><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Kato, Junko</creatorcontrib><creatorcontrib>Shuto, Yutaro</creatorcontrib><creatorcontrib>Kusakizako, Tsukasa</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Endo, Masaki</creatorcontrib><creatorcontrib>Toki, Seiichi</creatorcontrib><creatorcontrib>Saika, Hiroaki</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagamura, Reina</au><au>Kujirai, Tomoya</au><au>Kato, Junko</au><au>Shuto, Yutaro</au><au>Kusakizako, Tsukasa</au><au>Hirano, Hisato</au><au>Endo, Masaki</au><au>Toki, Seiichi</au><au>Saika, Hiroaki</au><au>Kurumizaka, Hitoshi</au><au>Nureki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into how Cas9 targets nucleosomes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-30</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10744</spage><pages>10744-</pages><artnum>10744</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39737984</pmid><doi>10.1038/s41467-024-54768-z</doi><orcidid>https://orcid.org/0009-0007-8710-4134</orcidid><orcidid>https://orcid.org/0000-0002-6186-6647</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-12, Vol.15 (1), p.10744, Article 10744 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11685650 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 101/28 45 631/337/4041/3196 631/535/1258/1259 Chromatin Chromatin - chemistry Chromatin - metabolism CRISPR CRISPR-Associated Protein 9 - chemistry CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems Cryoelectron Microscopy Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA Cleavage DNA structure Editing Electron microscopy Electrophoresis Endonuclease Eukaryotes Gene Editing Genetic engineering Genome editing Histones Histones - chemistry Histones - metabolism Humanities and Social Sciences Models, Molecular multidisciplinary Nucleosomes Nucleosomes - metabolism Nucleosomes - ultrastructure Polyacrylamide Prokaryotes RNA, Guide, CRISPR-Cas Systems - metabolism Science Science (multidisciplinary) |
title | Structural insights into how Cas9 targets nucleosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20how%20Cas9%20targets%20nucleosomes&rft.jtitle=Nature%20communications&rft.au=Nagamura,%20Reina&rft.date=2024-12-30&rft.volume=15&rft.issue=1&rft.spage=10744&rft.pages=10744-&rft.artnum=10744&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-54768-z&rft_dat=%3Cproquest_pubme%3E3150202207%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150202207&rft_id=info:pmid/39737984&rfr_iscdi=true |