Structural insights into how Cas9 targets nucleosomes

The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-12, Vol.15 (1), p.10744, Article 10744
Hauptverfasser: Nagamura, Reina, Kujirai, Tomoya, Kato, Junko, Shuto, Yutaro, Kusakizako, Tsukasa, Hirano, Hisato, Endo, Masaki, Toki, Seiichi, Saika, Hiroaki, Kurumizaka, Hitoshi, Nureki, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10744
container_title Nature communications
container_volume 15
creator Nagamura, Reina
Kujirai, Tomoya
Kato, Junko
Shuto, Yutaro
Kusakizako, Tsukasa
Hirano, Hisato
Endo, Masaki
Toki, Seiichi
Saika, Hiroaki
Kurumizaka, Hitoshi
Nureki, Osamu
description The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE)  analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin. CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.
doi_str_mv 10.1038/s41467-024-54768-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11685650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150202207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227z-961e0a0f11eb2e67ea16e86480efc75b9ec16fb5b7ff3d0455ef4f562ee644673</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMottT-ARdScONmNO_MrESKLyi4UNchM71pp0wnNZlR7K83fVirC7PJJfe7J_dwEDol-JJgll4FTrhUCaY8EVzJNFkeoC7FnCREUXa4V3dQP4QZjodlJOX8GHVYppjKUt5F4rnxbdG03lSDsg7lZNqEWDRuMHUfg6EJ2aAxfgLxtW6LClxwcwgn6MiaKkB_e_fQ693ty_AhGT3dPw5vRklBqVommSSADbaEQE5BKjBEQip5isEWSuQZFETaXOTKWjbGXAiw3ApJASSP7lgPXW90F20-h3EBdRMX1Qtfzo3_1M6U-nenLqd64t41ITIVUuCocLFV8O6thdDoeRkKqCpTg2uDZiRCXErKInr-B5251tfR35qimFK8WoluqMK7EDzY3TYE61UyepOMjsnodTJ6GYfO9n3sRr5ziADbACG26gn4n7__kf0CfIyaCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150202207</pqid></control><display><type>article</type><title>Structural insights into how Cas9 targets nucleosomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Nagamura, Reina ; Kujirai, Tomoya ; Kato, Junko ; Shuto, Yutaro ; Kusakizako, Tsukasa ; Hirano, Hisato ; Endo, Masaki ; Toki, Seiichi ; Saika, Hiroaki ; Kurumizaka, Hitoshi ; Nureki, Osamu</creator><creatorcontrib>Nagamura, Reina ; Kujirai, Tomoya ; Kato, Junko ; Shuto, Yutaro ; Kusakizako, Tsukasa ; Hirano, Hisato ; Endo, Masaki ; Toki, Seiichi ; Saika, Hiroaki ; Kurumizaka, Hitoshi ; Nureki, Osamu</creatorcontrib><description>The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE)  analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin. CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-54768-z</identifier><identifier>PMID: 39737984</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 45 ; 631/337/4041/3196 ; 631/535/1258/1259 ; Chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; CRISPR ; CRISPR-Associated Protein 9 - chemistry ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA Cleavage ; DNA structure ; Editing ; Electron microscopy ; Electrophoresis ; Endonuclease ; Eukaryotes ; Gene Editing ; Genetic engineering ; Genome editing ; Histones ; Histones - chemistry ; Histones - metabolism ; Humanities and Social Sciences ; Models, Molecular ; multidisciplinary ; Nucleosomes ; Nucleosomes - metabolism ; Nucleosomes - ultrastructure ; Polyacrylamide ; Prokaryotes ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10744, Article 10744</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227z-961e0a0f11eb2e67ea16e86480efc75b9ec16fb5b7ff3d0455ef4f562ee644673</cites><orcidid>0009-0007-8710-4134 ; 0000-0002-6186-6647 ; 0000-0001-7412-3722 ; 0000-0003-1813-7008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685650/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685650/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39737984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagamura, Reina</creatorcontrib><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Kato, Junko</creatorcontrib><creatorcontrib>Shuto, Yutaro</creatorcontrib><creatorcontrib>Kusakizako, Tsukasa</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Endo, Masaki</creatorcontrib><creatorcontrib>Toki, Seiichi</creatorcontrib><creatorcontrib>Saika, Hiroaki</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><title>Structural insights into how Cas9 targets nucleosomes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE)  analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin. CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.</description><subject>101/28</subject><subject>45</subject><subject>631/337/4041/3196</subject><subject>631/535/1258/1259</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - chemistry</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Cleavage</subject><subject>DNA structure</subject><subject>Editing</subject><subject>Electron microscopy</subject><subject>Electrophoresis</subject><subject>Endonuclease</subject><subject>Eukaryotes</subject><subject>Gene Editing</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Nucleosomes</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleosomes - ultrastructure</subject><subject>Polyacrylamide</subject><subject>Prokaryotes</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMottT-ARdScONmNO_MrESKLyi4UNchM71pp0wnNZlR7K83fVirC7PJJfe7J_dwEDol-JJgll4FTrhUCaY8EVzJNFkeoC7FnCREUXa4V3dQP4QZjodlJOX8GHVYppjKUt5F4rnxbdG03lSDsg7lZNqEWDRuMHUfg6EJ2aAxfgLxtW6LClxwcwgn6MiaKkB_e_fQ693ty_AhGT3dPw5vRklBqVommSSADbaEQE5BKjBEQip5isEWSuQZFETaXOTKWjbGXAiw3ApJASSP7lgPXW90F20-h3EBdRMX1Qtfzo3_1M6U-nenLqd64t41ITIVUuCocLFV8O6thdDoeRkKqCpTg2uDZiRCXErKInr-B5251tfR35qimFK8WoluqMK7EDzY3TYE61UyepOMjsnodTJ6GYfO9n3sRr5ziADbACG26gn4n7__kf0CfIyaCA</recordid><startdate>20241230</startdate><enddate>20241230</enddate><creator>Nagamura, Reina</creator><creator>Kujirai, Tomoya</creator><creator>Kato, Junko</creator><creator>Shuto, Yutaro</creator><creator>Kusakizako, Tsukasa</creator><creator>Hirano, Hisato</creator><creator>Endo, Masaki</creator><creator>Toki, Seiichi</creator><creator>Saika, Hiroaki</creator><creator>Kurumizaka, Hitoshi</creator><creator>Nureki, Osamu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-8710-4134</orcidid><orcidid>https://orcid.org/0000-0002-6186-6647</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid></search><sort><creationdate>20241230</creationdate><title>Structural insights into how Cas9 targets nucleosomes</title><author>Nagamura, Reina ; Kujirai, Tomoya ; Kato, Junko ; Shuto, Yutaro ; Kusakizako, Tsukasa ; Hirano, Hisato ; Endo, Masaki ; Toki, Seiichi ; Saika, Hiroaki ; Kurumizaka, Hitoshi ; Nureki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227z-961e0a0f11eb2e67ea16e86480efc75b9ec16fb5b7ff3d0455ef4f562ee644673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>45</topic><topic>631/337/4041/3196</topic><topic>631/535/1258/1259</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - chemistry</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Cleavage</topic><topic>DNA structure</topic><topic>Editing</topic><topic>Electron microscopy</topic><topic>Electrophoresis</topic><topic>Endonuclease</topic><topic>Eukaryotes</topic><topic>Gene Editing</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Nucleosomes</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleosomes - ultrastructure</topic><topic>Polyacrylamide</topic><topic>Prokaryotes</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagamura, Reina</creatorcontrib><creatorcontrib>Kujirai, Tomoya</creatorcontrib><creatorcontrib>Kato, Junko</creatorcontrib><creatorcontrib>Shuto, Yutaro</creatorcontrib><creatorcontrib>Kusakizako, Tsukasa</creatorcontrib><creatorcontrib>Hirano, Hisato</creatorcontrib><creatorcontrib>Endo, Masaki</creatorcontrib><creatorcontrib>Toki, Seiichi</creatorcontrib><creatorcontrib>Saika, Hiroaki</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagamura, Reina</au><au>Kujirai, Tomoya</au><au>Kato, Junko</au><au>Shuto, Yutaro</au><au>Kusakizako, Tsukasa</au><au>Hirano, Hisato</au><au>Endo, Masaki</au><au>Toki, Seiichi</au><au>Saika, Hiroaki</au><au>Kurumizaka, Hitoshi</au><au>Nureki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into how Cas9 targets nucleosomes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-30</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10744</spage><pages>10744-</pages><artnum>10744</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE)  analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin. CRISPR-Cas9 derived from prokaryotes is a powerful genome editing tool. Here, authors report cryo-EM structure of Cas9-sgRNA-nucleosome complex targeting linker DNA, providing insights into Cas9’s interaction with nucleosomes and its implications for genome editing in chromatin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39737984</pmid><doi>10.1038/s41467-024-54768-z</doi><orcidid>https://orcid.org/0009-0007-8710-4134</orcidid><orcidid>https://orcid.org/0000-0002-6186-6647</orcidid><orcidid>https://orcid.org/0000-0001-7412-3722</orcidid><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-12, Vol.15 (1), p.10744, Article 10744
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11685650
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects 101/28
45
631/337/4041/3196
631/535/1258/1259
Chromatin
Chromatin - chemistry
Chromatin - metabolism
CRISPR
CRISPR-Associated Protein 9 - chemistry
CRISPR-Associated Protein 9 - genetics
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems
Cryoelectron Microscopy
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - metabolism
DNA Cleavage
DNA structure
Editing
Electron microscopy
Electrophoresis
Endonuclease
Eukaryotes
Gene Editing
Genetic engineering
Genome editing
Histones
Histones - chemistry
Histones - metabolism
Humanities and Social Sciences
Models, Molecular
multidisciplinary
Nucleosomes
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Polyacrylamide
Prokaryotes
RNA, Guide, CRISPR-Cas Systems - metabolism
Science
Science (multidisciplinary)
title Structural insights into how Cas9 targets nucleosomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20how%20Cas9%20targets%20nucleosomes&rft.jtitle=Nature%20communications&rft.au=Nagamura,%20Reina&rft.date=2024-12-30&rft.volume=15&rft.issue=1&rft.spage=10744&rft.pages=10744-&rft.artnum=10744&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-54768-z&rft_dat=%3Cproquest_pubme%3E3150202207%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150202207&rft_id=info:pmid/39737984&rfr_iscdi=true