3D printed microneedles: revamping transdermal drug delivery systems

One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug delivery and translational research 2025-02, Vol.15 (2), p.436-454
Hauptverfasser: Prabhu, Ashlesh, Baliga, Vishal, Shenoy, Raghavendra, Dessai, Akanksha D., Nayak, Usha Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 2
container_start_page 436
container_title Drug delivery and translational research
container_volume 15
creator Prabhu, Ashlesh
Baliga, Vishal
Shenoy, Raghavendra
Dessai, Akanksha D.
Nayak, Usha Y.
description One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
doi_str_mv 10.1007/s13346-024-01679-7
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11683023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39103595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c676a9faf6c2c68bc5f0fc429a0c52e3774bf1fb572e1b4007109b1525e2edf23</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmjsD3BA_QOFfLRJwwWhjS9pEheQuEVp6pRObTol3aT9ezIKE1zwxZbs97X9IHRB8BXBWFwHwljGU0yzFBMuZCqO0BklEqdMZsXxoWbvEzQLYYVjZJwIKU7RhEmCWS7zM7Rgi2TtGzdAlXSN8b0DqFoIN4mHre7WjauTwWsXKvCdbpPKb-qkgrbZgt8lYRcG6MI5OrG6DTD7zlP09nD_On9Kly-Pz_O7ZWoYLYbUcMG1tNpyQw0vSpNbbE1GpcYmp8CEyEpLbJkLCqTM4pcEy5LkNAcKlaVsim5H3_Wm7KAy4OJprYr3d9rvVK8b9bfjmg9V91tFCC8Ypiw60NEhfhqCB3sQE6z2XNXIVUWu6ourElF0-XvtQfJDMQ6wcSDsUdbg1arfeBdR_Gf7Cb5ThX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D printed microneedles: revamping transdermal drug delivery systems</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Prabhu, Ashlesh ; Baliga, Vishal ; Shenoy, Raghavendra ; Dessai, Akanksha D. ; Nayak, Usha Y.</creator><creatorcontrib>Prabhu, Ashlesh ; Baliga, Vishal ; Shenoy, Raghavendra ; Dessai, Akanksha D. ; Nayak, Usha Y.</creatorcontrib><description>One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.</description><identifier>ISSN: 2190-393X</identifier><identifier>EISSN: 2190-3948</identifier><identifier>DOI: 10.1007/s13346-024-01679-7</identifier><identifier>PMID: 39103595</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Administration, Cutaneous ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Drug Delivery Systems - instrumentation ; Equipment Design ; Humans ; Microinjections - instrumentation ; Needles ; Pharmaceutical Sciences/Technology ; Printing, Three-Dimensional ; Review ; Review Article</subject><ispartof>Drug delivery and translational research, 2025-02, Vol.15 (2), p.436-454</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-c676a9faf6c2c68bc5f0fc429a0c52e3774bf1fb572e1b4007109b1525e2edf23</cites><orcidid>0000-0002-1995-3114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13346-024-01679-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13346-024-01679-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39103595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prabhu, Ashlesh</creatorcontrib><creatorcontrib>Baliga, Vishal</creatorcontrib><creatorcontrib>Shenoy, Raghavendra</creatorcontrib><creatorcontrib>Dessai, Akanksha D.</creatorcontrib><creatorcontrib>Nayak, Usha Y.</creatorcontrib><title>3D printed microneedles: revamping transdermal drug delivery systems</title><title>Drug delivery and translational research</title><addtitle>Drug Deliv. and Transl. Res</addtitle><addtitle>Drug Deliv Transl Res</addtitle><description>One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.</description><subject>Administration, Cutaneous</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Microinjections - instrumentation</subject><subject>Needles</subject><subject>Pharmaceutical Sciences/Technology</subject><subject>Printing, Three-Dimensional</subject><subject>Review</subject><subject>Review Article</subject><issn>2190-393X</issn><issn>2190-3948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEYmjsD3BA_QOFfLRJwwWhjS9pEheQuEVp6pRObTol3aT9ezIKE1zwxZbs97X9IHRB8BXBWFwHwljGU0yzFBMuZCqO0BklEqdMZsXxoWbvEzQLYYVjZJwIKU7RhEmCWS7zM7Rgi2TtGzdAlXSN8b0DqFoIN4mHre7WjauTwWsXKvCdbpPKb-qkgrbZgt8lYRcG6MI5OrG6DTD7zlP09nD_On9Kly-Pz_O7ZWoYLYbUcMG1tNpyQw0vSpNbbE1GpcYmp8CEyEpLbJkLCqTM4pcEy5LkNAcKlaVsim5H3_Wm7KAy4OJprYr3d9rvVK8b9bfjmg9V91tFCC8Ypiw60NEhfhqCB3sQE6z2XNXIVUWu6ourElF0-XvtQfJDMQ6wcSDsUdbg1arfeBdR_Gf7Cb5ThX4</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Prabhu, Ashlesh</creator><creator>Baliga, Vishal</creator><creator>Shenoy, Raghavendra</creator><creator>Dessai, Akanksha D.</creator><creator>Nayak, Usha Y.</creator><general>Springer US</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1995-3114</orcidid></search><sort><creationdate>20250201</creationdate><title>3D printed microneedles: revamping transdermal drug delivery systems</title><author>Prabhu, Ashlesh ; Baliga, Vishal ; Shenoy, Raghavendra ; Dessai, Akanksha D. ; Nayak, Usha Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c676a9faf6c2c68bc5f0fc429a0c52e3774bf1fb572e1b4007109b1525e2edf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Administration, Cutaneous</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Microinjections - instrumentation</topic><topic>Needles</topic><topic>Pharmaceutical Sciences/Technology</topic><topic>Printing, Three-Dimensional</topic><topic>Review</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabhu, Ashlesh</creatorcontrib><creatorcontrib>Baliga, Vishal</creatorcontrib><creatorcontrib>Shenoy, Raghavendra</creatorcontrib><creatorcontrib>Dessai, Akanksha D.</creatorcontrib><creatorcontrib>Nayak, Usha Y.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug delivery and translational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabhu, Ashlesh</au><au>Baliga, Vishal</au><au>Shenoy, Raghavendra</au><au>Dessai, Akanksha D.</au><au>Nayak, Usha Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed microneedles: revamping transdermal drug delivery systems</atitle><jtitle>Drug delivery and translational research</jtitle><stitle>Drug Deliv. and Transl. Res</stitle><addtitle>Drug Deliv Transl Res</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>15</volume><issue>2</issue><spage>436</spage><epage>454</epage><pages>436-454</pages><issn>2190-393X</issn><eissn>2190-3948</eissn><abstract>One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39103595</pmid><doi>10.1007/s13346-024-01679-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1995-3114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-393X
ispartof Drug delivery and translational research, 2025-02, Vol.15 (2), p.436-454
issn 2190-393X
2190-3948
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11683023
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Administration, Cutaneous
Animals
Biomedical and Life Sciences
Biomedicine
Drug Delivery Systems - instrumentation
Equipment Design
Humans
Microinjections - instrumentation
Needles
Pharmaceutical Sciences/Technology
Printing, Three-Dimensional
Review
Review Article
title 3D printed microneedles: revamping transdermal drug delivery systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20microneedles:%20revamping%20transdermal%20drug%20delivery%20systems&rft.jtitle=Drug%20delivery%20and%20translational%20research&rft.au=Prabhu,%20Ashlesh&rft.date=2025-02-01&rft.volume=15&rft.issue=2&rft.spage=436&rft.epage=454&rft.pages=436-454&rft.issn=2190-393X&rft.eissn=2190-3948&rft_id=info:doi/10.1007/s13346-024-01679-7&rft_dat=%3Cpubmed_cross%3E39103595%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39103595&rfr_iscdi=true