Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films

Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, Vol.36 (52), p.e2408664-n/a
Hauptverfasser: Hazra, Sankalpa, Schwaigert, Tobias, Ross, Aiden, Lu, Haidong, Saha, Utkarsh, Trinquet, Victor, Akkopru‐Akgun, Betul, Gregory, Benjamin Z., Mangu, Anudeep, Sarker, Suchismita, Kuznetsova, Tatiana, Sarker, Saugata, Li, Xin, Barone, Matthew R., Xu, Xiaoshan, Freeland, John W., Engel‐Herbert, Roman, Lindenberg, Aaron M., Singer, Andrej, Trolier‐McKinstry, Susan, Muller, David A., Rignanese, Gian‐Marco, Salmani‐Rezaie, Salva, Stoica, Vladimir A., Gruverman, Alexei, Chen, Long‐Qing, Schlom, Darrell G., Gopalan, Venkatraman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2408664
container_title Advanced materials (Weinheim)
container_volume 36
creator Hazra, Sankalpa
Schwaigert, Tobias
Ross, Aiden
Lu, Haidong
Saha, Utkarsh
Trinquet, Victor
Akkopru‐Akgun, Betul
Gregory, Benjamin Z.
Mangu, Anudeep
Sarker, Suchismita
Kuznetsova, Tatiana
Sarker, Saugata
Li, Xin
Barone, Matthew R.
Xu, Xiaoshan
Freeland, John W.
Engel‐Herbert, Roman
Lindenberg, Aaron M.
Singer, Andrej
Trolier‐McKinstry, Susan
Muller, David A.
Rignanese, Gian‐Marco
Salmani‐Rezaie, Salva
Stoica, Vladimir A.
Gruverman, Alexei
Chen, Long‐Qing
Schlom, Darrell G.
Gopalan, Venkatraman
description Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc > 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc > 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing. Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.
doi_str_mv 10.1002/adma.202408664
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11681320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128813584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2924-2f915865363a53c47bdf5f9806de31835961822901e5cd36c6e734757a6db2443</originalsourceid><addsrcrecordid>eNpdkctPAjEQxhujEXxcPW_ixcti37QnQ1DQiHIQz03Z7UJJt8WW1fDfuwRCopd5ZH75ZiYfADcI9hCE-F6Xte5hiCkUnNMT0EUMo5xCyU5BF0rCcsmp6ICLlFYQQskhPwcdIhkhVKAuGA-DCylpl31sorY-mzXe-kUWqmxkYgzGmWITbZHNovbJbmzwKWux1_f5lGSzZVuOrKvTFTirtEvm-pAvwefoaTZ8zifT8ctwMMnXWGKa40oiJjgjnGhGCtqflxWrpIC8NAQJwiRHAmMJkWFFSXjBTZ_QPutrXs4xpeQSPOx11828NmVhfHu2U-toax23Kmir_k68XapF-FYIcYEIhq3C3UEhhq_GpI2qbSqMc9qb0CRFEBYtycRu2e0_dBWa6Nv_WopKznahpeSe-rHObI-nIKh2DqmdQ-rokBo8vg2OHfkFh26Dow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149651496</pqid></control><display><type>article</type><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</title><source>Wiley Online Library All Journals</source><creator>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru‐Akgun, Betul ; Gregory, Benjamin Z. ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R. ; Xu, Xiaoshan ; Freeland, John W. ; Engel‐Herbert, Roman ; Lindenberg, Aaron M. ; Singer, Andrej ; Trolier‐McKinstry, Susan ; Muller, David A. ; Rignanese, Gian‐Marco ; Salmani‐Rezaie, Salva ; Stoica, Vladimir A. ; Gruverman, Alexei ; Chen, Long‐Qing ; Schlom, Darrell G. ; Gopalan, Venkatraman</creator><creatorcontrib>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru‐Akgun, Betul ; Gregory, Benjamin Z. ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R. ; Xu, Xiaoshan ; Freeland, John W. ; Engel‐Herbert, Roman ; Lindenberg, Aaron M. ; Singer, Andrej ; Trolier‐McKinstry, Susan ; Muller, David A. ; Rignanese, Gian‐Marco ; Salmani‐Rezaie, Salva ; Stoica, Vladimir A. ; Gruverman, Alexei ; Chen, Long‐Qing ; Schlom, Darrell G. ; Gopalan, Venkatraman</creatorcontrib><description>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc &gt; 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc &gt; 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing. Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408664</identifier><identifier>PMID: 39533481</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cryogenic temperature ; Curie temperature ; Electrons ; Epitaxial growth ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Melting points ; Molecular beam epitaxy ; Optical properties ; phase‐field modeling ; Polarization ; Potassium niobates ; Quantum computing ; Second harmonic generation ; strain‐tuning ; Temperature dependence ; Thin films ; Tuning</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (52), p.e2408664-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3317-9134 ; 0000-0002-9126-8058 ; 0000-0002-1422-1205 ; 0000-0003-3359-3781 ; 0009-0001-8195-6172 ; 0000-0003-1221-181X ; 0000-0003-0492-2750 ; 0000-0003-4129-0473 ; 0000-0003-3085-2207 ; 0000-0003-2493-6113 ; 0000-0003-0580-0229 ; 0000-0002-2965-9242 ; 0000-0003-4814-5308 ; 0000-0002-2734-7819 ; 0000-0002-9349-8391 ; 0000-0001-6866-3677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202408664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202408664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Hazra, Sankalpa</creatorcontrib><creatorcontrib>Schwaigert, Tobias</creatorcontrib><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Saha, Utkarsh</creatorcontrib><creatorcontrib>Trinquet, Victor</creatorcontrib><creatorcontrib>Akkopru‐Akgun, Betul</creatorcontrib><creatorcontrib>Gregory, Benjamin Z.</creatorcontrib><creatorcontrib>Mangu, Anudeep</creatorcontrib><creatorcontrib>Sarker, Suchismita</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Sarker, Saugata</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Barone, Matthew R.</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>Engel‐Herbert, Roman</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>Singer, Andrej</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><creatorcontrib>Muller, David A.</creatorcontrib><creatorcontrib>Rignanese, Gian‐Marco</creatorcontrib><creatorcontrib>Salmani‐Rezaie, Salva</creatorcontrib><creatorcontrib>Stoica, Vladimir A.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Chen, Long‐Qing</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</title><title>Advanced materials (Weinheim)</title><description>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc &gt; 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc &gt; 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing. Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.</description><subject>Cryogenic temperature</subject><subject>Curie temperature</subject><subject>Electrons</subject><subject>Epitaxial growth</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Melting points</subject><subject>Molecular beam epitaxy</subject><subject>Optical properties</subject><subject>phase‐field modeling</subject><subject>Polarization</subject><subject>Potassium niobates</subject><subject>Quantum computing</subject><subject>Second harmonic generation</subject><subject>strain‐tuning</subject><subject>Temperature dependence</subject><subject>Thin films</subject><subject>Tuning</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkctPAjEQxhujEXxcPW_ixcti37QnQ1DQiHIQz03Z7UJJt8WW1fDfuwRCopd5ZH75ZiYfADcI9hCE-F6Xte5hiCkUnNMT0EUMo5xCyU5BF0rCcsmp6ICLlFYQQskhPwcdIhkhVKAuGA-DCylpl31sorY-mzXe-kUWqmxkYgzGmWITbZHNovbJbmzwKWux1_f5lGSzZVuOrKvTFTirtEvm-pAvwefoaTZ8zifT8ctwMMnXWGKa40oiJjgjnGhGCtqflxWrpIC8NAQJwiRHAmMJkWFFSXjBTZ_QPutrXs4xpeQSPOx11828NmVhfHu2U-toax23Kmir_k68XapF-FYIcYEIhq3C3UEhhq_GpI2qbSqMc9qb0CRFEBYtycRu2e0_dBWa6Nv_WopKznahpeSe-rHObI-nIKh2DqmdQ-rokBo8vg2OHfkFh26Dow</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hazra, Sankalpa</creator><creator>Schwaigert, Tobias</creator><creator>Ross, Aiden</creator><creator>Lu, Haidong</creator><creator>Saha, Utkarsh</creator><creator>Trinquet, Victor</creator><creator>Akkopru‐Akgun, Betul</creator><creator>Gregory, Benjamin Z.</creator><creator>Mangu, Anudeep</creator><creator>Sarker, Suchismita</creator><creator>Kuznetsova, Tatiana</creator><creator>Sarker, Saugata</creator><creator>Li, Xin</creator><creator>Barone, Matthew R.</creator><creator>Xu, Xiaoshan</creator><creator>Freeland, John W.</creator><creator>Engel‐Herbert, Roman</creator><creator>Lindenberg, Aaron M.</creator><creator>Singer, Andrej</creator><creator>Trolier‐McKinstry, Susan</creator><creator>Muller, David A.</creator><creator>Rignanese, Gian‐Marco</creator><creator>Salmani‐Rezaie, Salva</creator><creator>Stoica, Vladimir A.</creator><creator>Gruverman, Alexei</creator><creator>Chen, Long‐Qing</creator><creator>Schlom, Darrell G.</creator><creator>Gopalan, Venkatraman</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3317-9134</orcidid><orcidid>https://orcid.org/0000-0002-9126-8058</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0009-0001-8195-6172</orcidid><orcidid>https://orcid.org/0000-0003-1221-181X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0000-0003-3085-2207</orcidid><orcidid>https://orcid.org/0000-0003-2493-6113</orcidid><orcidid>https://orcid.org/0000-0003-0580-0229</orcidid><orcidid>https://orcid.org/0000-0002-2965-9242</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0002-9349-8391</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid></search><sort><creationdate>20241201</creationdate><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</title><author>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru‐Akgun, Betul ; Gregory, Benjamin Z. ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R. ; Xu, Xiaoshan ; Freeland, John W. ; Engel‐Herbert, Roman ; Lindenberg, Aaron M. ; Singer, Andrej ; Trolier‐McKinstry, Susan ; Muller, David A. ; Rignanese, Gian‐Marco ; Salmani‐Rezaie, Salva ; Stoica, Vladimir A. ; Gruverman, Alexei ; Chen, Long‐Qing ; Schlom, Darrell G. ; Gopalan, Venkatraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2924-2f915865363a53c47bdf5f9806de31835961822901e5cd36c6e734757a6db2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryogenic temperature</topic><topic>Curie temperature</topic><topic>Electrons</topic><topic>Epitaxial growth</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Melting points</topic><topic>Molecular beam epitaxy</topic><topic>Optical properties</topic><topic>phase‐field modeling</topic><topic>Polarization</topic><topic>Potassium niobates</topic><topic>Quantum computing</topic><topic>Second harmonic generation</topic><topic>strain‐tuning</topic><topic>Temperature dependence</topic><topic>Thin films</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, Sankalpa</creatorcontrib><creatorcontrib>Schwaigert, Tobias</creatorcontrib><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Saha, Utkarsh</creatorcontrib><creatorcontrib>Trinquet, Victor</creatorcontrib><creatorcontrib>Akkopru‐Akgun, Betul</creatorcontrib><creatorcontrib>Gregory, Benjamin Z.</creatorcontrib><creatorcontrib>Mangu, Anudeep</creatorcontrib><creatorcontrib>Sarker, Suchismita</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Sarker, Saugata</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Barone, Matthew R.</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>Engel‐Herbert, Roman</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>Singer, Andrej</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><creatorcontrib>Muller, David A.</creatorcontrib><creatorcontrib>Rignanese, Gian‐Marco</creatorcontrib><creatorcontrib>Salmani‐Rezaie, Salva</creatorcontrib><creatorcontrib>Stoica, Vladimir A.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Chen, Long‐Qing</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, Sankalpa</au><au>Schwaigert, Tobias</au><au>Ross, Aiden</au><au>Lu, Haidong</au><au>Saha, Utkarsh</au><au>Trinquet, Victor</au><au>Akkopru‐Akgun, Betul</au><au>Gregory, Benjamin Z.</au><au>Mangu, Anudeep</au><au>Sarker, Suchismita</au><au>Kuznetsova, Tatiana</au><au>Sarker, Saugata</au><au>Li, Xin</au><au>Barone, Matthew R.</au><au>Xu, Xiaoshan</au><au>Freeland, John W.</au><au>Engel‐Herbert, Roman</au><au>Lindenberg, Aaron M.</au><au>Singer, Andrej</au><au>Trolier‐McKinstry, Susan</au><au>Muller, David A.</au><au>Rignanese, Gian‐Marco</au><au>Salmani‐Rezaie, Salva</au><au>Stoica, Vladimir A.</au><au>Gruverman, Alexei</au><au>Chen, Long‐Qing</au><au>Schlom, Darrell G.</au><au>Gopalan, Venkatraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>36</volume><issue>52</issue><spage>e2408664</spage><epage>n/a</epage><pages>e2408664-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc &gt; 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc &gt; 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing. Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39533481</pmid><doi>10.1002/adma.202408664</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3317-9134</orcidid><orcidid>https://orcid.org/0000-0002-9126-8058</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0009-0001-8195-6172</orcidid><orcidid>https://orcid.org/0000-0003-1221-181X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0000-0003-3085-2207</orcidid><orcidid>https://orcid.org/0000-0003-2493-6113</orcidid><orcidid>https://orcid.org/0000-0003-0580-0229</orcidid><orcidid>https://orcid.org/0000-0002-2965-9242</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0002-9349-8391</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-12, Vol.36 (52), p.e2408664-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11681320
source Wiley Online Library All Journals
subjects Cryogenic temperature
Curie temperature
Electrons
Epitaxial growth
Ferroelectric materials
Ferroelectricity
ferroelectrics
Melting points
Molecular beam epitaxy
Optical properties
phase‐field modeling
Polarization
Potassium niobates
Quantum computing
Second harmonic generation
strain‐tuning
Temperature dependence
Thin films
Tuning
title Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20Strain%20Tuning%20of%20Ferroelectric%20Transitions%20in%20KNbO3%20Thin%20Films&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hazra,%20Sankalpa&rft.date=2024-12-01&rft.volume=36&rft.issue=52&rft.spage=e2408664&rft.epage=n/a&rft.pages=e2408664-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408664&rft_dat=%3Cproquest_pubme%3E3128813584%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149651496&rft_id=info:pmid/39533481&rfr_iscdi=true