Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study
In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were ass...
Gespeichert in:
Veröffentlicht in: | Polymers 2024-12, Vol.16 (24), p.3559 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 3559 |
container_title | Polymers |
container_volume | 16 |
creator | Jeon, Hee-Chang Kim, Young-Seong |
description | In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength. Due to the inherent characteristics of epoxy, a single specimen was fabricated through chemical bonding, even post-curing. This approach demonstrated that a three-layer structure, developed using the layer-by-layer method, exhibited improved elastic and flexural moduli compared to a single-layer composite. This improvement aligns with theoretical predictions, which suggest that stiffness increases when stiffer materials are positioned farther from the neutral axis in a layered structure. Furthermore, numerical analysis validated changes in stress distribution across each layer. Consequently, this method enables the production of composites with superior mechanical properties while minimizing the quantity of cellulose nanocrystals required. |
doi_str_mv | 10.3390/polym16243559 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11677902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821917283</galeid><sourcerecordid>A821917283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e854bd43f98f297230d5b686a9cf43546c090420651756a3d5e1a60cc40247103</originalsourceid><addsrcrecordid>eNpdkk1P3DAQhqOqVUGUY6-VpV56CdjxV9xLtV1tAWmBSm3PlmM7YJTEqZ0gcuw_78BSBPUcPBo_886MPEXxnuAjShU-HmO39ERUjHKuXhX7FZa0ZFTg18_8veIw5xsMh3EhiHxb7FElJWGE7Bd_zqObOzN5h869vTZDsKZD31McfZqCzyi2aDPGu6X8ajJAp0uTgkPr2I8xhwmA22DQ1iw-lc1SPjholbPvm275jFYD2tyBVOj9MIGwGRy6mHsI3Jf5Mc1ueVe8aU2X_eHjfVD8-rb5uT4tt5cnZ-vVtrSUkan0NWeNY7RVdVspWVHseCNqYZRtYXwmLFaYVVhwIrkw1HFPjMDWMlwxSTA9KL7sdMe56b2z0FAynR6hN5MWHU3QL1-GcK2v4q0mREipcAUKnx4VUvw9-zzpPmTru84MPs5ZU8JpLamgHNCP_6E3cU4DzAcUU5IpqmqgjnbUlem8DkMbobAFc74PNg6-DRBf1RVRRFY1hYRyl2BTzDn59ql9gvX9RugXGwH8h-czP9H__p_-BVLUsgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149749398</pqid></control><display><type>article</type><title>Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Jeon, Hee-Chang ; Kim, Young-Seong</creator><creatorcontrib>Jeon, Hee-Chang ; Kim, Young-Seong</creatorcontrib><description>In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength. Due to the inherent characteristics of epoxy, a single specimen was fabricated through chemical bonding, even post-curing. This approach demonstrated that a three-layer structure, developed using the layer-by-layer method, exhibited improved elastic and flexural moduli compared to a single-layer composite. This improvement aligns with theoretical predictions, which suggest that stiffness increases when stiffer materials are positioned farther from the neutral axis in a layered structure. Furthermore, numerical analysis validated changes in stress distribution across each layer. Consequently, this method enables the production of composites with superior mechanical properties while minimizing the quantity of cellulose nanocrystals required.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16243559</identifier><identifier>PMID: 39771411</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Assembly ; Cellulose ; Chemical bonds ; Chemical properties ; Composite materials ; Epoxy resins ; Hybrid composites ; Mechanical properties ; Nanocrystals ; Numerical analysis ; Silicones ; Stress distribution</subject><ispartof>Polymers, 2024-12, Vol.16 (24), p.3559</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-e854bd43f98f297230d5b686a9cf43546c090420651756a3d5e1a60cc40247103</cites><orcidid>0000-0003-0783-6997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677902/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677902/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39771411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Hee-Chang</creatorcontrib><creatorcontrib>Kim, Young-Seong</creatorcontrib><title>Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength. Due to the inherent characteristics of epoxy, a single specimen was fabricated through chemical bonding, even post-curing. This approach demonstrated that a three-layer structure, developed using the layer-by-layer method, exhibited improved elastic and flexural moduli compared to a single-layer composite. This improvement aligns with theoretical predictions, which suggest that stiffness increases when stiffer materials are positioned farther from the neutral axis in a layered structure. Furthermore, numerical analysis validated changes in stress distribution across each layer. Consequently, this method enables the production of composites with superior mechanical properties while minimizing the quantity of cellulose nanocrystals required.</description><subject>Analysis</subject><subject>Assembly</subject><subject>Cellulose</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Composite materials</subject><subject>Epoxy resins</subject><subject>Hybrid composites</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Numerical analysis</subject><subject>Silicones</subject><subject>Stress distribution</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkk1P3DAQhqOqVUGUY6-VpV56CdjxV9xLtV1tAWmBSm3PlmM7YJTEqZ0gcuw_78BSBPUcPBo_886MPEXxnuAjShU-HmO39ERUjHKuXhX7FZa0ZFTg18_8veIw5xsMh3EhiHxb7FElJWGE7Bd_zqObOzN5h869vTZDsKZD31McfZqCzyi2aDPGu6X8ajJAp0uTgkPr2I8xhwmA22DQ1iw-lc1SPjholbPvm275jFYD2tyBVOj9MIGwGRy6mHsI3Jf5Mc1ueVe8aU2X_eHjfVD8-rb5uT4tt5cnZ-vVtrSUkan0NWeNY7RVdVspWVHseCNqYZRtYXwmLFaYVVhwIrkw1HFPjMDWMlwxSTA9KL7sdMe56b2z0FAynR6hN5MWHU3QL1-GcK2v4q0mREipcAUKnx4VUvw9-zzpPmTru84MPs5ZU8JpLamgHNCP_6E3cU4DzAcUU5IpqmqgjnbUlem8DkMbobAFc74PNg6-DRBf1RVRRFY1hYRyl2BTzDn59ql9gvX9RugXGwH8h-czP9H__p_-BVLUsgQ</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Jeon, Hee-Chang</creator><creator>Kim, Young-Seong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0783-6997</orcidid></search><sort><creationdate>20241220</creationdate><title>Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study</title><author>Jeon, Hee-Chang ; Kim, Young-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e854bd43f98f297230d5b686a9cf43546c090420651756a3d5e1a60cc40247103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Assembly</topic><topic>Cellulose</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Composite materials</topic><topic>Epoxy resins</topic><topic>Hybrid composites</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Numerical analysis</topic><topic>Silicones</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Hee-Chang</creatorcontrib><creatorcontrib>Kim, Young-Seong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Hee-Chang</au><au>Kim, Young-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-12-20</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>3559</spage><pages>3559-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength. Due to the inherent characteristics of epoxy, a single specimen was fabricated through chemical bonding, even post-curing. This approach demonstrated that a three-layer structure, developed using the layer-by-layer method, exhibited improved elastic and flexural moduli compared to a single-layer composite. This improvement aligns with theoretical predictions, which suggest that stiffness increases when stiffer materials are positioned farther from the neutral axis in a layered structure. Furthermore, numerical analysis validated changes in stress distribution across each layer. Consequently, this method enables the production of composites with superior mechanical properties while minimizing the quantity of cellulose nanocrystals required.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39771411</pmid><doi>10.3390/polym16243559</doi><orcidid>https://orcid.org/0000-0003-0783-6997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-12, Vol.16 (24), p.3559 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11677902 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Analysis Assembly Cellulose Chemical bonds Chemical properties Composite materials Epoxy resins Hybrid composites Mechanical properties Nanocrystals Numerical analysis Silicones Stress distribution |
title | Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulated%20Mechanical%20Properties%20of%20Epoxy-Based%20Hybrid%20Composites%20via%20Layer-by-Layer%20Assembly:%20An%20Experimental%20and%20Numerical%20Study&rft.jtitle=Polymers&rft.au=Jeon,%20Hee-Chang&rft.date=2024-12-20&rft.volume=16&rft.issue=24&rft.spage=3559&rft.pages=3559-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16243559&rft_dat=%3Cgale_pubme%3EA821917283%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149749398&rft_id=info:pmid/39771411&rft_galeid=A821917283&rfr_iscdi=true |