Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes

partial tandem duplication (PTD) involves intragenic duplications and has been associated with poorer prognosis. In this study, we evaluated PTD in 1277 patients with hematological malignancies using optical genome mapping (OGM). PTD was detected in 35 patients with acute myeloid leukemia (AML) (7%)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2024-12, Vol.16 (24), p.4193
Hauptverfasser: Wei, Qing, Hu, Shimin, Xu, Jie, Loghavi, Sanam, Daver, Naval, Toruner, Gokce A, Wang, Wei, Medeiros, L Jeffrey, Tang, Guilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 4193
container_title Cancers
container_volume 16
creator Wei, Qing
Hu, Shimin
Xu, Jie
Loghavi, Sanam
Daver, Naval
Toruner, Gokce A
Wang, Wei
Medeiros, L Jeffrey
Tang, Guilin
description partial tandem duplication (PTD) involves intragenic duplications and has been associated with poorer prognosis. In this study, we evaluated PTD in 1277 patients with hematological malignancies using optical genome mapping (OGM). PTD was detected in 35 patients with acute myeloid leukemia (AML) (7%), 5 patients with myelodysplastic syndrome (MDS) (2.2%), and 5 patients with chronic myelomonocytic leukemia (CMML) (7.1%). The PTDs varied in size, region, and copy number. An Archer RNA fusion assay confirmed PTD in all 25 patients tested: 15 spanning exons 2 to 8 and 10 spanning exons 2 to 10. Most patients exhibited a normal ( = 21) or non-complex ( = 20) karyotype. The most common chromosomal abnormalities included loss of 20q or 7q and trisomy 11/gain of 11q. All patients had gene mutations, with ITD and prevalent in AML and and common in MDS and CMML. Among patients who received treatment and had at least one follow-up bone marrow evaluation, 82% of those with de novo AML achieved complete remission after initial induction chemotherapy, whereas 90% of patients with secondary or refractory/relapsed AML showed refractory or partial responses. All but one patient with MDS and CMML were refractory to therapy. We conclude that OGM is an effective tool for detecting PTD. Neoplasms with PTD frequently harbor gene mutations and display normal or non-complex karyotypes. Patients with PTD are generally refractory to conventional therapy, except for de novo AML.
doi_str_mv 10.3390/cancers16244193
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11674272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821761455</galeid><sourcerecordid>A821761455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-f2fa6edc5e9194b55cc7c20523276c7bce13d6f407b0b37a89541df46802dace3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIVqVnbsgSFw5sG3_E3nBBqy0URJdFaDlbjjNZXCV2ajtI-6_4icy2pbQV9sGe8XtvZjxTFC9pecJ5XZ5a4y3ERCUTgtb8SXHISsVmUtbi6b37QXGc0mWJi3OqpHpeHPBaSVnW7LD4fQYZbHbBk9CRL6sNW5BvJmZnerIxvoWBnE1j76y5xjQ7sh4zWj05Bx8GICszjs5vifNktYM-uJZ8hTD2Jg3pHVmkFKwzGVqy3OWwBQ_ITm_3bORO-VoW7U0EkwfwmXyHNKIL0InxMZns9u71lC3GSy-KZ53pExzfnkfFj48fNstPs4v1-efl4mJmOWd51rHOSGhtBTWtRVNV1irLyopxpqRVjQXKW9mJUjVlw5WZ15WgbSfkvGStscCPivc3uuPUDCiEOUTT6zG6wcSdDsbphy_e_dTb8EtTKpVgiqHCm1uFGK4mSFkPLlnoe-MhTElzWvH5Pl6N0NePoJdhih7rQ5TA1JSo5D_U1vSgne8CBrZ7Ub2YM2wtFVWFqJP_oHBjL50NHjqH_geE0xuCjSGlCN1dkbTU-0HTjwYNGa_u_80d_u9Y8T9rRtFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149547456</pqid></control><display><type>article</type><title>Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wei, Qing ; Hu, Shimin ; Xu, Jie ; Loghavi, Sanam ; Daver, Naval ; Toruner, Gokce A ; Wang, Wei ; Medeiros, L Jeffrey ; Tang, Guilin</creator><creatorcontrib>Wei, Qing ; Hu, Shimin ; Xu, Jie ; Loghavi, Sanam ; Daver, Naval ; Toruner, Gokce A ; Wang, Wei ; Medeiros, L Jeffrey ; Tang, Guilin</creatorcontrib><description>partial tandem duplication (PTD) involves intragenic duplications and has been associated with poorer prognosis. In this study, we evaluated PTD in 1277 patients with hematological malignancies using optical genome mapping (OGM). PTD was detected in 35 patients with acute myeloid leukemia (AML) (7%), 5 patients with myelodysplastic syndrome (MDS) (2.2%), and 5 patients with chronic myelomonocytic leukemia (CMML) (7.1%). The PTDs varied in size, region, and copy number. An Archer RNA fusion assay confirmed PTD in all 25 patients tested: 15 spanning exons 2 to 8 and 10 spanning exons 2 to 10. Most patients exhibited a normal ( = 21) or non-complex ( = 20) karyotype. The most common chromosomal abnormalities included loss of 20q or 7q and trisomy 11/gain of 11q. All patients had gene mutations, with ITD and prevalent in AML and and common in MDS and CMML. Among patients who received treatment and had at least one follow-up bone marrow evaluation, 82% of those with de novo AML achieved complete remission after initial induction chemotherapy, whereas 90% of patients with secondary or refractory/relapsed AML showed refractory or partial responses. All but one patient with MDS and CMML were refractory to therapy. We conclude that OGM is an effective tool for detecting PTD. Neoplasms with PTD frequently harbor gene mutations and display normal or non-complex karyotypes. Patients with PTD are generally refractory to conventional therapy, except for de novo AML.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers16244193</identifier><identifier>PMID: 39766092</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acute myeloid leukemia ; Bone marrow ; Cancer ; Chemotherapy ; Chromosomes ; Chronic myelomonocytic leukemia ; Cytogenetics ; Development and progression ; DNA binding proteins ; Epigenetic inheritance ; Epigenetics ; Fluorescence in situ hybridization ; Gene mapping ; Gene mutations ; Genes ; Genetic aspects ; Genetic transcription ; Genomes ; Genomics ; Hematology ; Karyotypes ; Kinases ; Leukemia ; Medical prognosis ; MLL protein ; Mutation ; Myelodysplastic syndrome ; Myelomonocytic leukemia ; Patient outcomes ; Point mutation ; Remission ; Signal transduction ; Transcription factors ; Tumors</subject><ispartof>Cancers, 2024-12, Vol.16 (24), p.4193</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-f2fa6edc5e9194b55cc7c20523276c7bce13d6f407b0b37a89541df46802dace3</cites><orcidid>0000-0001-8980-3202 ; 0000-0001-7110-3814 ; 0000-0002-9482-4806 ; 0000-0002-5305-6337 ; 0000-0003-0141-9682 ; 0000-0001-6577-8006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674272/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674272/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39766092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Qing</creatorcontrib><creatorcontrib>Hu, Shimin</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Loghavi, Sanam</creatorcontrib><creatorcontrib>Daver, Naval</creatorcontrib><creatorcontrib>Toruner, Gokce A</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Medeiros, L Jeffrey</creatorcontrib><creatorcontrib>Tang, Guilin</creatorcontrib><title>Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>partial tandem duplication (PTD) involves intragenic duplications and has been associated with poorer prognosis. In this study, we evaluated PTD in 1277 patients with hematological malignancies using optical genome mapping (OGM). PTD was detected in 35 patients with acute myeloid leukemia (AML) (7%), 5 patients with myelodysplastic syndrome (MDS) (2.2%), and 5 patients with chronic myelomonocytic leukemia (CMML) (7.1%). The PTDs varied in size, region, and copy number. An Archer RNA fusion assay confirmed PTD in all 25 patients tested: 15 spanning exons 2 to 8 and 10 spanning exons 2 to 10. Most patients exhibited a normal ( = 21) or non-complex ( = 20) karyotype. The most common chromosomal abnormalities included loss of 20q or 7q and trisomy 11/gain of 11q. All patients had gene mutations, with ITD and prevalent in AML and and common in MDS and CMML. Among patients who received treatment and had at least one follow-up bone marrow evaluation, 82% of those with de novo AML achieved complete remission after initial induction chemotherapy, whereas 90% of patients with secondary or refractory/relapsed AML showed refractory or partial responses. All but one patient with MDS and CMML were refractory to therapy. We conclude that OGM is an effective tool for detecting PTD. Neoplasms with PTD frequently harbor gene mutations and display normal or non-complex karyotypes. Patients with PTD are generally refractory to conventional therapy, except for de novo AML.</description><subject>Acute myeloid leukemia</subject><subject>Bone marrow</subject><subject>Cancer</subject><subject>Chemotherapy</subject><subject>Chromosomes</subject><subject>Chronic myelomonocytic leukemia</subject><subject>Cytogenetics</subject><subject>Development and progression</subject><subject>DNA binding proteins</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene mapping</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hematology</subject><subject>Karyotypes</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medical prognosis</subject><subject>MLL protein</subject><subject>Mutation</subject><subject>Myelodysplastic syndrome</subject><subject>Myelomonocytic leukemia</subject><subject>Patient outcomes</subject><subject>Point mutation</subject><subject>Remission</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUk1v1DAQjRCIVqVnbsgSFw5sG3_E3nBBqy0URJdFaDlbjjNZXCV2ajtI-6_4icy2pbQV9sGe8XtvZjxTFC9pecJ5XZ5a4y3ERCUTgtb8SXHISsVmUtbi6b37QXGc0mWJi3OqpHpeHPBaSVnW7LD4fQYZbHbBk9CRL6sNW5BvJmZnerIxvoWBnE1j76y5xjQ7sh4zWj05Bx8GICszjs5vifNktYM-uJZ8hTD2Jg3pHVmkFKwzGVqy3OWwBQ_ITm_3bORO-VoW7U0EkwfwmXyHNKIL0InxMZns9u71lC3GSy-KZ53pExzfnkfFj48fNstPs4v1-efl4mJmOWd51rHOSGhtBTWtRVNV1irLyopxpqRVjQXKW9mJUjVlw5WZ15WgbSfkvGStscCPivc3uuPUDCiEOUTT6zG6wcSdDsbphy_e_dTb8EtTKpVgiqHCm1uFGK4mSFkPLlnoe-MhTElzWvH5Pl6N0NePoJdhih7rQ5TA1JSo5D_U1vSgne8CBrZ7Ub2YM2wtFVWFqJP_oHBjL50NHjqH_geE0xuCjSGlCN1dkbTU-0HTjwYNGa_u_80d_u9Y8T9rRtFY</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Wei, Qing</creator><creator>Hu, Shimin</creator><creator>Xu, Jie</creator><creator>Loghavi, Sanam</creator><creator>Daver, Naval</creator><creator>Toruner, Gokce A</creator><creator>Wang, Wei</creator><creator>Medeiros, L Jeffrey</creator><creator>Tang, Guilin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8980-3202</orcidid><orcidid>https://orcid.org/0000-0001-7110-3814</orcidid><orcidid>https://orcid.org/0000-0002-9482-4806</orcidid><orcidid>https://orcid.org/0000-0002-5305-6337</orcidid><orcidid>https://orcid.org/0000-0003-0141-9682</orcidid><orcidid>https://orcid.org/0000-0001-6577-8006</orcidid></search><sort><creationdate>20241216</creationdate><title>Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes</title><author>Wei, Qing ; Hu, Shimin ; Xu, Jie ; Loghavi, Sanam ; Daver, Naval ; Toruner, Gokce A ; Wang, Wei ; Medeiros, L Jeffrey ; Tang, Guilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-f2fa6edc5e9194b55cc7c20523276c7bce13d6f407b0b37a89541df46802dace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acute myeloid leukemia</topic><topic>Bone marrow</topic><topic>Cancer</topic><topic>Chemotherapy</topic><topic>Chromosomes</topic><topic>Chronic myelomonocytic leukemia</topic><topic>Cytogenetics</topic><topic>Development and progression</topic><topic>DNA binding proteins</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene mapping</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hematology</topic><topic>Karyotypes</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medical prognosis</topic><topic>MLL protein</topic><topic>Mutation</topic><topic>Myelodysplastic syndrome</topic><topic>Myelomonocytic leukemia</topic><topic>Patient outcomes</topic><topic>Point mutation</topic><topic>Remission</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Qing</creatorcontrib><creatorcontrib>Hu, Shimin</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Loghavi, Sanam</creatorcontrib><creatorcontrib>Daver, Naval</creatorcontrib><creatorcontrib>Toruner, Gokce A</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Medeiros, L Jeffrey</creatorcontrib><creatorcontrib>Tang, Guilin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Qing</au><au>Hu, Shimin</au><au>Xu, Jie</au><au>Loghavi, Sanam</au><au>Daver, Naval</au><au>Toruner, Gokce A</au><au>Wang, Wei</au><au>Medeiros, L Jeffrey</au><au>Tang, Guilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2024-12-16</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>4193</spage><pages>4193-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>partial tandem duplication (PTD) involves intragenic duplications and has been associated with poorer prognosis. In this study, we evaluated PTD in 1277 patients with hematological malignancies using optical genome mapping (OGM). PTD was detected in 35 patients with acute myeloid leukemia (AML) (7%), 5 patients with myelodysplastic syndrome (MDS) (2.2%), and 5 patients with chronic myelomonocytic leukemia (CMML) (7.1%). The PTDs varied in size, region, and copy number. An Archer RNA fusion assay confirmed PTD in all 25 patients tested: 15 spanning exons 2 to 8 and 10 spanning exons 2 to 10. Most patients exhibited a normal ( = 21) or non-complex ( = 20) karyotype. The most common chromosomal abnormalities included loss of 20q or 7q and trisomy 11/gain of 11q. All patients had gene mutations, with ITD and prevalent in AML and and common in MDS and CMML. Among patients who received treatment and had at least one follow-up bone marrow evaluation, 82% of those with de novo AML achieved complete remission after initial induction chemotherapy, whereas 90% of patients with secondary or refractory/relapsed AML showed refractory or partial responses. All but one patient with MDS and CMML were refractory to therapy. We conclude that OGM is an effective tool for detecting PTD. Neoplasms with PTD frequently harbor gene mutations and display normal or non-complex karyotypes. Patients with PTD are generally refractory to conventional therapy, except for de novo AML.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39766092</pmid><doi>10.3390/cancers16244193</doi><orcidid>https://orcid.org/0000-0001-8980-3202</orcidid><orcidid>https://orcid.org/0000-0001-7110-3814</orcidid><orcidid>https://orcid.org/0000-0002-9482-4806</orcidid><orcidid>https://orcid.org/0000-0002-5305-6337</orcidid><orcidid>https://orcid.org/0000-0003-0141-9682</orcidid><orcidid>https://orcid.org/0000-0001-6577-8006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2024-12, Vol.16 (24), p.4193
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11674272
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Acute myeloid leukemia
Bone marrow
Cancer
Chemotherapy
Chromosomes
Chronic myelomonocytic leukemia
Cytogenetics
Development and progression
DNA binding proteins
Epigenetic inheritance
Epigenetics
Fluorescence in situ hybridization
Gene mapping
Gene mutations
Genes
Genetic aspects
Genetic transcription
Genomes
Genomics
Hematology
Karyotypes
Kinases
Leukemia
Medical prognosis
MLL protein
Mutation
Myelodysplastic syndrome
Myelomonocytic leukemia
Patient outcomes
Point mutation
Remission
Signal transduction
Transcription factors
Tumors
title Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20KMT2A%20Partial%20Tandem%20Duplication%20by%20Optical%20Genome%20Mapping%20in%20Myeloid%20Neoplasms:%20Associated%20Cytogenetics,%20Gene%20Mutations,%20Treatment%20Responses,%20and%20Patient%20Outcomes&rft.jtitle=Cancers&rft.au=Wei,%20Qing&rft.date=2024-12-16&rft.volume=16&rft.issue=24&rft.spage=4193&rft.pages=4193-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers16244193&rft_dat=%3Cgale_pubme%3EA821761455%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149547456&rft_id=info:pmid/39766092&rft_galeid=A821761455&rfr_iscdi=true