Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair

Purpose In laparoscopic inguinal hernia surgery, proper recognition of loose connective tissue, nerves, vas deferens, and microvessels is important to prevent postoperative complications, such as recurrence, pain, sexual dysfunction, and bleeding. EUREKA (Anaut Inc., Tokyo, Japan) is a system that u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hernia : the journal of hernias and abdominal wall surgery 2024-12, Vol.29 (1), p.52, Article 52
Hauptverfasser: Mita, Kazuhito, Kobayashi, Nao, Takahashi, Kunihiko, Sakai, Takashi, Shimaguchi, Mayu, Kouno, Michitaka, Toyota, Naoyuki, Hatano, Minoru, Toyota, Tsuyoshi, Sasaki, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 52
container_title Hernia : the journal of hernias and abdominal wall surgery
container_volume 29
creator Mita, Kazuhito
Kobayashi, Nao
Takahashi, Kunihiko
Sakai, Takashi
Shimaguchi, Mayu
Kouno, Michitaka
Toyota, Naoyuki
Hatano, Minoru
Toyota, Tsuyoshi
Sasaki, Junichi
description Purpose In laparoscopic inguinal hernia surgery, proper recognition of loose connective tissue, nerves, vas deferens, and microvessels is important to prevent postoperative complications, such as recurrence, pain, sexual dysfunction, and bleeding. EUREKA (Anaut Inc., Tokyo, Japan) is a system that uses artificial intelligence (AI) for anatomical recognition. This system can intraoperatively confirm the aforementioned anatomical landmarks. In this study, we validated the accuracy of EUREKA in recognizing dissection layers, nerves, vas deferens, and microvessels during transabdominal preperitoneal inguinal hernia repair (TAPP). Methods We used TAPP videos to compare EUREKA’s recognition of loose connective tissue, nerves, vas deferens, and microvessels with the original surgical video and examined whether EUREKA accurately identified these structures. Intersection over Union (IoU) and F1/Dice scores were calculated to quantitively evaluate AI predictive images. Results The mean IoU and F1/Dice scores were 0.33 and 0.50 for connective tissue, 0.24 and 0.38 for nerves, 0.50 and 0.66 for the vas deferens, and 0.30 and 0.45 for microvessels, respectively. Compared with the images without EUREKA visualization, dissection layers were very clearly recognized and displayed when appropriate tension was applied.
doi_str_mv 10.1007/s10029-024-03223-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11671561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149540658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2275-26413b52754654d051741fff1e73b0b791edb9323dfe57620510d7adf05976e73</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEoqXwAhxQJC4cCPgzXp9QVfElVeqlnC0nHqeusnawk5X6Tn1IZjellB568Xg8v_nP2J6qekvJJ0qI-lxwZbohTDSEM8Yb-aw6pkxsGs2IeP5gf1S9KuWaELIR7eZldcS1YkJofVzdnkY7p23o7Vhn6NMQwxxSrJOvXSgF-oM32hvI5WMdIe8A7c6W2oGHDBE9G12NCjlhrMBY6qWEONQ2z8GHPqByiDOMYxgg9lC7Je_Dc7ax2M5h8YjIlGGCHOYU4ZAwLIfjK8gxWGxtsiG_rl54OxZ4c2dPql_fvl6e_WjOL77_PDs9b3rGlGxYKyjvJG5FK4UjkipBvfcUFO9IpzQF12nOuPMgVcsQIE5Z54nUqkXopPqy6k5LtwXXQ8RmRzPlsLX5xiQbzP-RGK7MkHaG0lZR2VJU-HCnkNPvBcpstqH0-AY2QlqK4VRoKUgrN4i-f4RepyXj3VeKM6r5XpCtFD5zKRn8fTeUmP00mHUaDE6DOUyDkZj07uE97lP-fj8CfAXKtP8TyP9qPyH7BxTkxJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149321931</pqid></control><display><type>article</type><title>Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mita, Kazuhito ; Kobayashi, Nao ; Takahashi, Kunihiko ; Sakai, Takashi ; Shimaguchi, Mayu ; Kouno, Michitaka ; Toyota, Naoyuki ; Hatano, Minoru ; Toyota, Tsuyoshi ; Sasaki, Junichi</creator><creatorcontrib>Mita, Kazuhito ; Kobayashi, Nao ; Takahashi, Kunihiko ; Sakai, Takashi ; Shimaguchi, Mayu ; Kouno, Michitaka ; Toyota, Naoyuki ; Hatano, Minoru ; Toyota, Tsuyoshi ; Sasaki, Junichi</creatorcontrib><description>Purpose In laparoscopic inguinal hernia surgery, proper recognition of loose connective tissue, nerves, vas deferens, and microvessels is important to prevent postoperative complications, such as recurrence, pain, sexual dysfunction, and bleeding. EUREKA (Anaut Inc., Tokyo, Japan) is a system that uses artificial intelligence (AI) for anatomical recognition. This system can intraoperatively confirm the aforementioned anatomical landmarks. In this study, we validated the accuracy of EUREKA in recognizing dissection layers, nerves, vas deferens, and microvessels during transabdominal preperitoneal inguinal hernia repair (TAPP). Methods We used TAPP videos to compare EUREKA’s recognition of loose connective tissue, nerves, vas deferens, and microvessels with the original surgical video and examined whether EUREKA accurately identified these structures. Intersection over Union (IoU) and F1/Dice scores were calculated to quantitively evaluate AI predictive images. Results The mean IoU and F1/Dice scores were 0.33 and 0.50 for connective tissue, 0.24 and 0.38 for nerves, 0.50 and 0.66 for the vas deferens, and 0.30 and 0.45 for microvessels, respectively. Compared with the images without EUREKA visualization, dissection layers were very clearly recognized and displayed when appropriate tension was applied.</description><identifier>ISSN: 1248-9204</identifier><identifier>ISSN: 1265-4906</identifier><identifier>EISSN: 1248-9204</identifier><identifier>DOI: 10.1007/s10029-024-03223-5</identifier><identifier>PMID: 39724499</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Abdominal Surgery ; Anatomic Landmarks ; Artificial Intelligence ; Complications ; Connective tissue ; Connective Tissue - anatomy &amp; histology ; Connective tissues ; Dissection ; Dissection - methods ; Hernia ; Hernia, Inguinal - surgery ; Hernias ; Herniorrhaphy - methods ; How-I-Do-It ; Humans ; Laparoscopy ; Laparoscopy - methods ; Male ; Medicine ; Medicine &amp; Public Health ; Microvessels - anatomy &amp; histology ; Nerves ; Postoperative ; Vas deferens ; Vas Deferens - anatomy &amp; histology ; Vas Deferens - surgery</subject><ispartof>Hernia : the journal of hernias and abdominal wall surgery, 2024-12, Vol.29 (1), p.52, Article 52</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2025</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2275-26413b52754654d051741fff1e73b0b791edb9323dfe57620510d7adf05976e73</cites><orcidid>0000-0002-1516-8442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10029-024-03223-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10029-024-03223-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39724499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mita, Kazuhito</creatorcontrib><creatorcontrib>Kobayashi, Nao</creatorcontrib><creatorcontrib>Takahashi, Kunihiko</creatorcontrib><creatorcontrib>Sakai, Takashi</creatorcontrib><creatorcontrib>Shimaguchi, Mayu</creatorcontrib><creatorcontrib>Kouno, Michitaka</creatorcontrib><creatorcontrib>Toyota, Naoyuki</creatorcontrib><creatorcontrib>Hatano, Minoru</creatorcontrib><creatorcontrib>Toyota, Tsuyoshi</creatorcontrib><creatorcontrib>Sasaki, Junichi</creatorcontrib><title>Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair</title><title>Hernia : the journal of hernias and abdominal wall surgery</title><addtitle>Hernia</addtitle><addtitle>Hernia</addtitle><description>Purpose In laparoscopic inguinal hernia surgery, proper recognition of loose connective tissue, nerves, vas deferens, and microvessels is important to prevent postoperative complications, such as recurrence, pain, sexual dysfunction, and bleeding. EUREKA (Anaut Inc., Tokyo, Japan) is a system that uses artificial intelligence (AI) for anatomical recognition. This system can intraoperatively confirm the aforementioned anatomical landmarks. In this study, we validated the accuracy of EUREKA in recognizing dissection layers, nerves, vas deferens, and microvessels during transabdominal preperitoneal inguinal hernia repair (TAPP). Methods We used TAPP videos to compare EUREKA’s recognition of loose connective tissue, nerves, vas deferens, and microvessels with the original surgical video and examined whether EUREKA accurately identified these structures. Intersection over Union (IoU) and F1/Dice scores were calculated to quantitively evaluate AI predictive images. Results The mean IoU and F1/Dice scores were 0.33 and 0.50 for connective tissue, 0.24 and 0.38 for nerves, 0.50 and 0.66 for the vas deferens, and 0.30 and 0.45 for microvessels, respectively. Compared with the images without EUREKA visualization, dissection layers were very clearly recognized and displayed when appropriate tension was applied.</description><subject>Abdominal Surgery</subject><subject>Anatomic Landmarks</subject><subject>Artificial Intelligence</subject><subject>Complications</subject><subject>Connective tissue</subject><subject>Connective Tissue - anatomy &amp; histology</subject><subject>Connective tissues</subject><subject>Dissection</subject><subject>Dissection - methods</subject><subject>Hernia</subject><subject>Hernia, Inguinal - surgery</subject><subject>Hernias</subject><subject>Herniorrhaphy - methods</subject><subject>How-I-Do-It</subject><subject>Humans</subject><subject>Laparoscopy</subject><subject>Laparoscopy - methods</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Microvessels - anatomy &amp; histology</subject><subject>Nerves</subject><subject>Postoperative</subject><subject>Vas deferens</subject><subject>Vas Deferens - anatomy &amp; histology</subject><subject>Vas Deferens - surgery</subject><issn>1248-9204</issn><issn>1265-4906</issn><issn>1248-9204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9ks1u1DAQxyMEoqXwAhxQJC4cCPgzXp9QVfElVeqlnC0nHqeusnawk5X6Tn1IZjellB568Xg8v_nP2J6qekvJJ0qI-lxwZbohTDSEM8Yb-aw6pkxsGs2IeP5gf1S9KuWaELIR7eZldcS1YkJofVzdnkY7p23o7Vhn6NMQwxxSrJOvXSgF-oM32hvI5WMdIe8A7c6W2oGHDBE9G12NCjlhrMBY6qWEONQ2z8GHPqByiDOMYxgg9lC7Je_Dc7ax2M5h8YjIlGGCHOYU4ZAwLIfjK8gxWGxtsiG_rl54OxZ4c2dPql_fvl6e_WjOL77_PDs9b3rGlGxYKyjvJG5FK4UjkipBvfcUFO9IpzQF12nOuPMgVcsQIE5Z54nUqkXopPqy6k5LtwXXQ8RmRzPlsLX5xiQbzP-RGK7MkHaG0lZR2VJU-HCnkNPvBcpstqH0-AY2QlqK4VRoKUgrN4i-f4RepyXj3VeKM6r5XpCtFD5zKRn8fTeUmP00mHUaDE6DOUyDkZj07uE97lP-fj8CfAXKtP8TyP9qPyH7BxTkxJk</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Mita, Kazuhito</creator><creator>Kobayashi, Nao</creator><creator>Takahashi, Kunihiko</creator><creator>Sakai, Takashi</creator><creator>Shimaguchi, Mayu</creator><creator>Kouno, Michitaka</creator><creator>Toyota, Naoyuki</creator><creator>Hatano, Minoru</creator><creator>Toyota, Tsuyoshi</creator><creator>Sasaki, Junichi</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1516-8442</orcidid></search><sort><creationdate>20241226</creationdate><title>Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair</title><author>Mita, Kazuhito ; Kobayashi, Nao ; Takahashi, Kunihiko ; Sakai, Takashi ; Shimaguchi, Mayu ; Kouno, Michitaka ; Toyota, Naoyuki ; Hatano, Minoru ; Toyota, Tsuyoshi ; Sasaki, Junichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2275-26413b52754654d051741fff1e73b0b791edb9323dfe57620510d7adf05976e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdominal Surgery</topic><topic>Anatomic Landmarks</topic><topic>Artificial Intelligence</topic><topic>Complications</topic><topic>Connective tissue</topic><topic>Connective Tissue - anatomy &amp; histology</topic><topic>Connective tissues</topic><topic>Dissection</topic><topic>Dissection - methods</topic><topic>Hernia</topic><topic>Hernia, Inguinal - surgery</topic><topic>Hernias</topic><topic>Herniorrhaphy - methods</topic><topic>How-I-Do-It</topic><topic>Humans</topic><topic>Laparoscopy</topic><topic>Laparoscopy - methods</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Microvessels - anatomy &amp; histology</topic><topic>Nerves</topic><topic>Postoperative</topic><topic>Vas deferens</topic><topic>Vas Deferens - anatomy &amp; histology</topic><topic>Vas Deferens - surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mita, Kazuhito</creatorcontrib><creatorcontrib>Kobayashi, Nao</creatorcontrib><creatorcontrib>Takahashi, Kunihiko</creatorcontrib><creatorcontrib>Sakai, Takashi</creatorcontrib><creatorcontrib>Shimaguchi, Mayu</creatorcontrib><creatorcontrib>Kouno, Michitaka</creatorcontrib><creatorcontrib>Toyota, Naoyuki</creatorcontrib><creatorcontrib>Hatano, Minoru</creatorcontrib><creatorcontrib>Toyota, Tsuyoshi</creatorcontrib><creatorcontrib>Sasaki, Junichi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hernia : the journal of hernias and abdominal wall surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mita, Kazuhito</au><au>Kobayashi, Nao</au><au>Takahashi, Kunihiko</au><au>Sakai, Takashi</au><au>Shimaguchi, Mayu</au><au>Kouno, Michitaka</au><au>Toyota, Naoyuki</au><au>Hatano, Minoru</au><au>Toyota, Tsuyoshi</au><au>Sasaki, Junichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair</atitle><jtitle>Hernia : the journal of hernias and abdominal wall surgery</jtitle><stitle>Hernia</stitle><addtitle>Hernia</addtitle><date>2024-12-26</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>52</spage><pages>52-</pages><artnum>52</artnum><issn>1248-9204</issn><issn>1265-4906</issn><eissn>1248-9204</eissn><abstract>Purpose In laparoscopic inguinal hernia surgery, proper recognition of loose connective tissue, nerves, vas deferens, and microvessels is important to prevent postoperative complications, such as recurrence, pain, sexual dysfunction, and bleeding. EUREKA (Anaut Inc., Tokyo, Japan) is a system that uses artificial intelligence (AI) for anatomical recognition. This system can intraoperatively confirm the aforementioned anatomical landmarks. In this study, we validated the accuracy of EUREKA in recognizing dissection layers, nerves, vas deferens, and microvessels during transabdominal preperitoneal inguinal hernia repair (TAPP). Methods We used TAPP videos to compare EUREKA’s recognition of loose connective tissue, nerves, vas deferens, and microvessels with the original surgical video and examined whether EUREKA accurately identified these structures. Intersection over Union (IoU) and F1/Dice scores were calculated to quantitively evaluate AI predictive images. Results The mean IoU and F1/Dice scores were 0.33 and 0.50 for connective tissue, 0.24 and 0.38 for nerves, 0.50 and 0.66 for the vas deferens, and 0.30 and 0.45 for microvessels, respectively. Compared with the images without EUREKA visualization, dissection layers were very clearly recognized and displayed when appropriate tension was applied.</abstract><cop>Paris</cop><pub>Springer Paris</pub><pmid>39724499</pmid><doi>10.1007/s10029-024-03223-5</doi><orcidid>https://orcid.org/0000-0002-1516-8442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1248-9204
ispartof Hernia : the journal of hernias and abdominal wall surgery, 2024-12, Vol.29 (1), p.52, Article 52
issn 1248-9204
1265-4906
1248-9204
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11671561
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abdominal Surgery
Anatomic Landmarks
Artificial Intelligence
Complications
Connective tissue
Connective Tissue - anatomy & histology
Connective tissues
Dissection
Dissection - methods
Hernia
Hernia, Inguinal - surgery
Hernias
Herniorrhaphy - methods
How-I-Do-It
Humans
Laparoscopy
Laparoscopy - methods
Male
Medicine
Medicine & Public Health
Microvessels - anatomy & histology
Nerves
Postoperative
Vas deferens
Vas Deferens - anatomy & histology
Vas Deferens - surgery
title Anatomical recognition of dissection layers, nerves, vas deferens, and microvessels using artificial intelligence during transabdominal preperitoneal inguinal hernia repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomical%20recognition%20of%20dissection%20layers,%20nerves,%20vas%20deferens,%20and%20microvessels%20using%20artificial%20intelligence%20during%20transabdominal%20preperitoneal%20inguinal%20hernia%20repair&rft.jtitle=Hernia%20:%20the%20journal%20of%20hernias%20and%20abdominal%20wall%20surgery&rft.au=Mita,%20Kazuhito&rft.date=2024-12-26&rft.volume=29&rft.issue=1&rft.spage=52&rft.pages=52-&rft.artnum=52&rft.issn=1248-9204&rft.eissn=1248-9204&rft_id=info:doi/10.1007/s10029-024-03223-5&rft_dat=%3Cproquest_pubme%3E3149540658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149321931&rft_id=info:pmid/39724499&rfr_iscdi=true