Impact of storage and extraction methods on peat soil microbiomes

Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2024-12, Vol.12, p.e18745, Article e18745
Hauptverfasser: Cronin, Dylan, Li, Yueh-Fen, Evans, Paul, Tyson, Gene W, Woodcroft, Ben J, Rich, Virginia I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e18745
container_title PeerJ (San Francisco, CA)
container_volume 12
creator Cronin, Dylan
Li, Yueh-Fen
Evans, Paul
Tyson, Gene W
Woodcroft, Ben J
Rich, Virginia I
description Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method ( t) diverged from the others ( , and three variations of a modified , capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.
doi_str_mv 10.7717/peerj.18745
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821022600</galeid><doaj_id>oai_doaj_org_article_78b865b0b3be48a9892cd7ac3537fa01</doaj_id><sourcerecordid>A821022600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3129-c3e7729dfe325dc011f0cd1e01bcc95250d6f04ff3895b1ced2c57599e1f55873</originalsourceid><addsrcrecordid>eNptkt-LEzEQxxdRvOO8J99lQRBBWvNjs0mepBz-KBz4os8hm0zalN3NmmwP_e-dtufRggkkw-QzXyYzU1WvKVlKSeXHCSDvllTJRjyrrhlt5UJxoZ-f2VfVbSk7gkuxlij-srriWrJWNvq6Wq2Hybq5TqEuc8p2A7UdfQ2_54zumMZ6gHmbfKnRnMDOdUmxr4focupiGqC8ql4E2xe4fbxvqp9fPv-4-7a4__51fbe6XzhOmcYTpGTaB-BMeEcoDcR5CoR2zmnBBPFtIE0IXGnRUQeeOSGF1kCDEErym2p90vXJ7syU42DzH5NsNEdHyhtj8xxdD0aqTrWiIx3voFFWK82cl9ZxwWWwhKLWp5PWtO8G8A5G_G5_IXr5Msat2aQHQ7GoBLNChfePCjn92kOZzRCLg763I6R9MZw2WjScNBzRtyd0YzG3OIZ0qO0BNyvFKGHYFYLU8j8Ubg9Y7DRCiOi_CHh3FrAF28_bkvr9oWnlEvxwArFlpWQIT_-kxByGyByHyByHCOk356V5Yv-NDP8Lq6jAnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149543043</pqid></control><display><type>article</type><title>Impact of storage and extraction methods on peat soil microbiomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cronin, Dylan ; Li, Yueh-Fen ; Evans, Paul ; Tyson, Gene W ; Woodcroft, Ben J ; Rich, Virginia I</creator><creatorcontrib>Cronin, Dylan ; Li, Yueh-Fen ; Evans, Paul ; Tyson, Gene W ; Woodcroft, Ben J ; Rich, Virginia I ; IsoGenie 2016 and 2019 Field Teams</creatorcontrib><description>Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method ( t) diverged from the others ( , and three variations of a modified , capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.18745</identifier><identifier>PMID: 39726749</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Analysis ; Archaea - classification ; Archaea - genetics ; Archaea - isolation &amp; purification ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Biological diversity ; Carbon content ; Climate Change Biology ; Climate feedbacks ; DNA, Bacterial - analysis ; DNA, Bacterial - isolation &amp; purification ; Ecosystem Science ; Extraction ; Humic acid ; Methods ; Microbiology ; Microbiome ; Microbiota - genetics ; Peat ; Peatland ; RNA ; Soil ; Soil - chemistry ; Soil Microbiology ; Soil Science ; Soils ; Specimen Handling - methods ; Storage ; Sweden ; Tyson, Geoffrey</subject><ispartof>PeerJ (San Francisco, CA), 2024-12, Vol.12, p.e18745, Article e18745</ispartof><rights>2024 Cronin et al.</rights><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><rights>2024 Cronin et al. 2024 Cronin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3129-c3e7729dfe325dc011f0cd1e01bcc95250d6f04ff3895b1ced2c57599e1f55873</cites><orcidid>0000-0001-5995-2602 ; 0000-0003-0670-7480 ; 0000-0003-0558-102X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670759/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670759/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39726749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cronin, Dylan</creatorcontrib><creatorcontrib>Li, Yueh-Fen</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Tyson, Gene W</creatorcontrib><creatorcontrib>Woodcroft, Ben J</creatorcontrib><creatorcontrib>Rich, Virginia I</creatorcontrib><creatorcontrib>IsoGenie 2016 and 2019 Field Teams</creatorcontrib><title>Impact of storage and extraction methods on peat soil microbiomes</title><title>PeerJ (San Francisco, CA)</title><addtitle>PeerJ</addtitle><description>Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method ( t) diverged from the others ( , and three variations of a modified , capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.</description><subject>Analysis</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation &amp; purification</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Biological diversity</subject><subject>Carbon content</subject><subject>Climate Change Biology</subject><subject>Climate feedbacks</subject><subject>DNA, Bacterial - analysis</subject><subject>DNA, Bacterial - isolation &amp; purification</subject><subject>Ecosystem Science</subject><subject>Extraction</subject><subject>Humic acid</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Microbiome</subject><subject>Microbiota - genetics</subject><subject>Peat</subject><subject>Peatland</subject><subject>RNA</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soil Science</subject><subject>Soils</subject><subject>Specimen Handling - methods</subject><subject>Storage</subject><subject>Sweden</subject><subject>Tyson, Geoffrey</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-LEzEQxxdRvOO8J99lQRBBWvNjs0mepBz-KBz4os8hm0zalN3NmmwP_e-dtufRggkkw-QzXyYzU1WvKVlKSeXHCSDvllTJRjyrrhlt5UJxoZ-f2VfVbSk7gkuxlij-srriWrJWNvq6Wq2Hybq5TqEuc8p2A7UdfQ2_54zumMZ6gHmbfKnRnMDOdUmxr4focupiGqC8ql4E2xe4fbxvqp9fPv-4-7a4__51fbe6XzhOmcYTpGTaB-BMeEcoDcR5CoR2zmnBBPFtIE0IXGnRUQeeOSGF1kCDEErym2p90vXJ7syU42DzH5NsNEdHyhtj8xxdD0aqTrWiIx3voFFWK82cl9ZxwWWwhKLWp5PWtO8G8A5G_G5_IXr5Msat2aQHQ7GoBLNChfePCjn92kOZzRCLg763I6R9MZw2WjScNBzRtyd0YzG3OIZ0qO0BNyvFKGHYFYLU8j8Ubg9Y7DRCiOi_CHh3FrAF28_bkvr9oWnlEvxwArFlpWQIT_-kxByGyByHyByHCOk356V5Yv-NDP8Lq6jAnw</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Cronin, Dylan</creator><creator>Li, Yueh-Fen</creator><creator>Evans, Paul</creator><creator>Tyson, Gene W</creator><creator>Woodcroft, Ben J</creator><creator>Rich, Virginia I</creator><general>PeerJ. Ltd</general><general>PeerJ Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5995-2602</orcidid><orcidid>https://orcid.org/0000-0003-0670-7480</orcidid><orcidid>https://orcid.org/0000-0003-0558-102X</orcidid></search><sort><creationdate>20241223</creationdate><title>Impact of storage and extraction methods on peat soil microbiomes</title><author>Cronin, Dylan ; Li, Yueh-Fen ; Evans, Paul ; Tyson, Gene W ; Woodcroft, Ben J ; Rich, Virginia I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3129-c3e7729dfe325dc011f0cd1e01bcc95250d6f04ff3895b1ced2c57599e1f55873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation &amp; purification</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Biological diversity</topic><topic>Carbon content</topic><topic>Climate Change Biology</topic><topic>Climate feedbacks</topic><topic>DNA, Bacterial - analysis</topic><topic>DNA, Bacterial - isolation &amp; purification</topic><topic>Ecosystem Science</topic><topic>Extraction</topic><topic>Humic acid</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Microbiome</topic><topic>Microbiota - genetics</topic><topic>Peat</topic><topic>Peatland</topic><topic>RNA</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soil Science</topic><topic>Soils</topic><topic>Specimen Handling - methods</topic><topic>Storage</topic><topic>Sweden</topic><topic>Tyson, Geoffrey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cronin, Dylan</creatorcontrib><creatorcontrib>Li, Yueh-Fen</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Tyson, Gene W</creatorcontrib><creatorcontrib>Woodcroft, Ben J</creatorcontrib><creatorcontrib>Rich, Virginia I</creatorcontrib><creatorcontrib>IsoGenie 2016 and 2019 Field Teams</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cronin, Dylan</au><au>Li, Yueh-Fen</au><au>Evans, Paul</au><au>Tyson, Gene W</au><au>Woodcroft, Ben J</au><au>Rich, Virginia I</au><aucorp>IsoGenie 2016 and 2019 Field Teams</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of storage and extraction methods on peat soil microbiomes</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><addtitle>PeerJ</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>12</volume><spage>e18745</spage><pages>e18745-</pages><artnum>e18745</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method ( t) diverged from the others ( , and three variations of a modified , capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>39726749</pmid><doi>10.7717/peerj.18745</doi><orcidid>https://orcid.org/0000-0001-5995-2602</orcidid><orcidid>https://orcid.org/0000-0003-0670-7480</orcidid><orcidid>https://orcid.org/0000-0003-0558-102X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2024-12, Vol.12, p.e18745, Article e18745
issn 2167-8359
2167-8359
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670759
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Analysis
Archaea - classification
Archaea - genetics
Archaea - isolation & purification
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biological diversity
Carbon content
Climate Change Biology
Climate feedbacks
DNA, Bacterial - analysis
DNA, Bacterial - isolation & purification
Ecosystem Science
Extraction
Humic acid
Methods
Microbiology
Microbiome
Microbiota - genetics
Peat
Peatland
RNA
Soil
Soil - chemistry
Soil Microbiology
Soil Science
Soils
Specimen Handling - methods
Storage
Sweden
Tyson, Geoffrey
title Impact of storage and extraction methods on peat soil microbiomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20storage%20and%20extraction%20methods%20on%20peat%20soil%20microbiomes&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Cronin,%20Dylan&rft.aucorp=IsoGenie%202016%20and%202019%20Field%20Teams&rft.date=2024-12-23&rft.volume=12&rft.spage=e18745&rft.pages=e18745-&rft.artnum=e18745&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.18745&rft_dat=%3Cgale_doaj_%3EA821022600%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149543043&rft_id=info:pmid/39726749&rft_galeid=A821022600&rft_doaj_id=oai_doaj_org_article_78b865b0b3be48a9892cd7ac3537fa01&rfr_iscdi=true