Impact of storage and extraction methods on peat soil microbiomes
Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage con...
Gespeichert in:
Veröffentlicht in: | PeerJ (San Francisco, CA) CA), 2024-12, Vol.12, p.e18745, Article e18745 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e18745 |
container_title | PeerJ (San Francisco, CA) |
container_volume | 12 |
creator | Cronin, Dylan Li, Yueh-Fen Evans, Paul Tyson, Gene W Woodcroft, Ben J Rich, Virginia I |
description | Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method (
t) diverged from the others (
, and three variations of a modified
, capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations. |
doi_str_mv | 10.7717/peerj.18745 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821022600</galeid><doaj_id>oai_doaj_org_article_78b865b0b3be48a9892cd7ac3537fa01</doaj_id><sourcerecordid>A821022600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3129-c3e7729dfe325dc011f0cd1e01bcc95250d6f04ff3895b1ced2c57599e1f55873</originalsourceid><addsrcrecordid>eNptkt-LEzEQxxdRvOO8J99lQRBBWvNjs0mepBz-KBz4os8hm0zalN3NmmwP_e-dtufRggkkw-QzXyYzU1WvKVlKSeXHCSDvllTJRjyrrhlt5UJxoZ-f2VfVbSk7gkuxlij-srriWrJWNvq6Wq2Hybq5TqEuc8p2A7UdfQ2_54zumMZ6gHmbfKnRnMDOdUmxr4focupiGqC8ql4E2xe4fbxvqp9fPv-4-7a4__51fbe6XzhOmcYTpGTaB-BMeEcoDcR5CoR2zmnBBPFtIE0IXGnRUQeeOSGF1kCDEErym2p90vXJ7syU42DzH5NsNEdHyhtj8xxdD0aqTrWiIx3voFFWK82cl9ZxwWWwhKLWp5PWtO8G8A5G_G5_IXr5Msat2aQHQ7GoBLNChfePCjn92kOZzRCLg763I6R9MZw2WjScNBzRtyd0YzG3OIZ0qO0BNyvFKGHYFYLU8j8Ubg9Y7DRCiOi_CHh3FrAF28_bkvr9oWnlEvxwArFlpWQIT_-kxByGyByHyByHCOk356V5Yv-NDP8Lq6jAnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149543043</pqid></control><display><type>article</type><title>Impact of storage and extraction methods on peat soil microbiomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cronin, Dylan ; Li, Yueh-Fen ; Evans, Paul ; Tyson, Gene W ; Woodcroft, Ben J ; Rich, Virginia I</creator><creatorcontrib>Cronin, Dylan ; Li, Yueh-Fen ; Evans, Paul ; Tyson, Gene W ; Woodcroft, Ben J ; Rich, Virginia I ; IsoGenie 2016 and 2019 Field Teams</creatorcontrib><description>Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method (
t) diverged from the others (
, and three variations of a modified
, capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.18745</identifier><identifier>PMID: 39726749</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Analysis ; Archaea - classification ; Archaea - genetics ; Archaea - isolation & purification ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Biological diversity ; Carbon content ; Climate Change Biology ; Climate feedbacks ; DNA, Bacterial - analysis ; DNA, Bacterial - isolation & purification ; Ecosystem Science ; Extraction ; Humic acid ; Methods ; Microbiology ; Microbiome ; Microbiota - genetics ; Peat ; Peatland ; RNA ; Soil ; Soil - chemistry ; Soil Microbiology ; Soil Science ; Soils ; Specimen Handling - methods ; Storage ; Sweden ; Tyson, Geoffrey</subject><ispartof>PeerJ (San Francisco, CA), 2024-12, Vol.12, p.e18745, Article e18745</ispartof><rights>2024 Cronin et al.</rights><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><rights>2024 Cronin et al. 2024 Cronin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3129-c3e7729dfe325dc011f0cd1e01bcc95250d6f04ff3895b1ced2c57599e1f55873</cites><orcidid>0000-0001-5995-2602 ; 0000-0003-0670-7480 ; 0000-0003-0558-102X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670759/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670759/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39726749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cronin, Dylan</creatorcontrib><creatorcontrib>Li, Yueh-Fen</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Tyson, Gene W</creatorcontrib><creatorcontrib>Woodcroft, Ben J</creatorcontrib><creatorcontrib>Rich, Virginia I</creatorcontrib><creatorcontrib>IsoGenie 2016 and 2019 Field Teams</creatorcontrib><title>Impact of storage and extraction methods on peat soil microbiomes</title><title>PeerJ (San Francisco, CA)</title><addtitle>PeerJ</addtitle><description>Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method (
t) diverged from the others (
, and three variations of a modified
, capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.</description><subject>Analysis</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation & purification</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Biological diversity</subject><subject>Carbon content</subject><subject>Climate Change Biology</subject><subject>Climate feedbacks</subject><subject>DNA, Bacterial - analysis</subject><subject>DNA, Bacterial - isolation & purification</subject><subject>Ecosystem Science</subject><subject>Extraction</subject><subject>Humic acid</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Microbiome</subject><subject>Microbiota - genetics</subject><subject>Peat</subject><subject>Peatland</subject><subject>RNA</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soil Science</subject><subject>Soils</subject><subject>Specimen Handling - methods</subject><subject>Storage</subject><subject>Sweden</subject><subject>Tyson, Geoffrey</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-LEzEQxxdRvOO8J99lQRBBWvNjs0mepBz-KBz4os8hm0zalN3NmmwP_e-dtufRggkkw-QzXyYzU1WvKVlKSeXHCSDvllTJRjyrrhlt5UJxoZ-f2VfVbSk7gkuxlij-srriWrJWNvq6Wq2Hybq5TqEuc8p2A7UdfQ2_54zumMZ6gHmbfKnRnMDOdUmxr4focupiGqC8ql4E2xe4fbxvqp9fPv-4-7a4__51fbe6XzhOmcYTpGTaB-BMeEcoDcR5CoR2zmnBBPFtIE0IXGnRUQeeOSGF1kCDEErym2p90vXJ7syU42DzH5NsNEdHyhtj8xxdD0aqTrWiIx3voFFWK82cl9ZxwWWwhKLWp5PWtO8G8A5G_G5_IXr5Msat2aQHQ7GoBLNChfePCjn92kOZzRCLg763I6R9MZw2WjScNBzRtyd0YzG3OIZ0qO0BNyvFKGHYFYLU8j8Ubg9Y7DRCiOi_CHh3FrAF28_bkvr9oWnlEvxwArFlpWQIT_-kxByGyByHyByHCOk356V5Yv-NDP8Lq6jAnw</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Cronin, Dylan</creator><creator>Li, Yueh-Fen</creator><creator>Evans, Paul</creator><creator>Tyson, Gene W</creator><creator>Woodcroft, Ben J</creator><creator>Rich, Virginia I</creator><general>PeerJ. Ltd</general><general>PeerJ Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5995-2602</orcidid><orcidid>https://orcid.org/0000-0003-0670-7480</orcidid><orcidid>https://orcid.org/0000-0003-0558-102X</orcidid></search><sort><creationdate>20241223</creationdate><title>Impact of storage and extraction methods on peat soil microbiomes</title><author>Cronin, Dylan ; Li, Yueh-Fen ; Evans, Paul ; Tyson, Gene W ; Woodcroft, Ben J ; Rich, Virginia I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3129-c3e7729dfe325dc011f0cd1e01bcc95250d6f04ff3895b1ced2c57599e1f55873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation & purification</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Biological diversity</topic><topic>Carbon content</topic><topic>Climate Change Biology</topic><topic>Climate feedbacks</topic><topic>DNA, Bacterial - analysis</topic><topic>DNA, Bacterial - isolation & purification</topic><topic>Ecosystem Science</topic><topic>Extraction</topic><topic>Humic acid</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Microbiome</topic><topic>Microbiota - genetics</topic><topic>Peat</topic><topic>Peatland</topic><topic>RNA</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soil Science</topic><topic>Soils</topic><topic>Specimen Handling - methods</topic><topic>Storage</topic><topic>Sweden</topic><topic>Tyson, Geoffrey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cronin, Dylan</creatorcontrib><creatorcontrib>Li, Yueh-Fen</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Tyson, Gene W</creatorcontrib><creatorcontrib>Woodcroft, Ben J</creatorcontrib><creatorcontrib>Rich, Virginia I</creatorcontrib><creatorcontrib>IsoGenie 2016 and 2019 Field Teams</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cronin, Dylan</au><au>Li, Yueh-Fen</au><au>Evans, Paul</au><au>Tyson, Gene W</au><au>Woodcroft, Ben J</au><au>Rich, Virginia I</au><aucorp>IsoGenie 2016 and 2019 Field Teams</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of storage and extraction methods on peat soil microbiomes</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><addtitle>PeerJ</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>12</volume><spage>e18745</spage><pages>e18745-</pages><artnum>e18745</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at -80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method (
t) diverged from the others (
, and three variations of a modified
, capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>39726749</pmid><doi>10.7717/peerj.18745</doi><orcidid>https://orcid.org/0000-0001-5995-2602</orcidid><orcidid>https://orcid.org/0000-0003-0670-7480</orcidid><orcidid>https://orcid.org/0000-0003-0558-102X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-8359 |
ispartof | PeerJ (San Francisco, CA), 2024-12, Vol.12, p.e18745, Article e18745 |
issn | 2167-8359 2167-8359 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670759 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Analysis Archaea - classification Archaea - genetics Archaea - isolation & purification Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biological diversity Carbon content Climate Change Biology Climate feedbacks DNA, Bacterial - analysis DNA, Bacterial - isolation & purification Ecosystem Science Extraction Humic acid Methods Microbiology Microbiome Microbiota - genetics Peat Peatland RNA Soil Soil - chemistry Soil Microbiology Soil Science Soils Specimen Handling - methods Storage Sweden Tyson, Geoffrey |
title | Impact of storage and extraction methods on peat soil microbiomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20storage%20and%20extraction%20methods%20on%20peat%20soil%20microbiomes&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Cronin,%20Dylan&rft.aucorp=IsoGenie%202016%20and%202019%20Field%20Teams&rft.date=2024-12-23&rft.volume=12&rft.spage=e18745&rft.pages=e18745-&rft.artnum=e18745&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.18745&rft_dat=%3Cgale_doaj_%3EA821022600%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149543043&rft_id=info:pmid/39726749&rft_galeid=A821022600&rft_doaj_id=oai_doaj_org_article_78b865b0b3be48a9892cd7ac3537fa01&rfr_iscdi=true |