Ecological dynamics explain modular denitrification in the ocean

Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO →NO →NO→N O→N ), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N O) production. Denitrification-derived N loss is typicall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-12, Vol.121 (52), p.e2417421121
Hauptverfasser: Sun, Xin, Buchanan, Pearse J, Zhang, Irene H, San Roman, Magdalena, Babbin, Andrew R, Zakem, Emily J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 52
container_start_page e2417421121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Sun, Xin
Buchanan, Pearse J
Zhang, Irene H
San Roman, Magdalena
Babbin, Andrew R
Zakem, Emily J
description Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO →NO →NO→N O→N ), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO and N O in a NO -filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO →NO module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO →NO module. Results also capture observations that NO is the dominant source of N O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.
doi_str_mv 10.1073/pnas.2417421121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151892568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-138551f800f22db253dbf7105dff57933c332039eda4c6cb4cf15d78012b6a373</originalsourceid><addsrcrecordid>eNpdkUtP3TAUhK2qqFxo1-yqSN10EzjHjzhZQYUoRUJiQ9eW4wcYJfatnVTl39cICoXVWcx3RjMaQg4QDhEkO9pGXQ4pR8kpIsV3ZIMwYNvxAd6TDQCVbc8p3yV7pdwBwCB6-EB22dANjHG5ISdnJk3pJhg9NfY-6jmY0rg_20mH2MzJrpPOjXUxLDn4Si0hxaZKy61rknE6fiQ7Xk_FfXq6--Tn97Pr0x_t5dX5xem3y9Yw6JYWWS8E-h7AU2pHKpgdvUQQ1nshaxjDGAU2OKu56czIjUdhZQ9Ix04zyfbJ8aPvdh1nZ42LS9aT2uYw63yvkg7qtRLDrbpJvxViJ2vxrjp8fXLI6dfqyqLmUIybJh1dWotiyCXSATmt6Jc36F1ac6z9KiWwH6jo-kodPVImp1Ky889pENTDPOphHvUyT_34_H-JZ_7fHuwvcrKLfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151892568</pqid></control><display><type>article</type><title>Ecological dynamics explain modular denitrification in the ocean</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Sun, Xin ; Buchanan, Pearse J ; Zhang, Irene H ; San Roman, Magdalena ; Babbin, Andrew R ; Zakem, Emily J</creator><creatorcontrib>Sun, Xin ; Buchanan, Pearse J ; Zhang, Irene H ; San Roman, Magdalena ; Babbin, Andrew R ; Zakem, Emily J</creatorcontrib><description>Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO →NO →NO→N O→N ), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO and N O in a NO -filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO →NO module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO →NO module. Results also capture observations that NO is the dominant source of N O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2417421121</identifier><identifier>PMID: 39693347</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria - metabolism ; Bioavailability ; Biological Sciences ; Denitrification ; Denitrification - physiology ; Ecosystem ; Ecosystem models ; Environmental gradient ; Marine microorganisms ; Microorganisms ; Modules ; Nitrogen - metabolism ; Nitrogen dioxide ; Nitrous oxide ; Nitrous Oxide - metabolism ; Oceans and Seas ; Organic matter ; Oxygen ; Oxygen - metabolism ; Seawater - chemistry ; Seawater - microbiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-12, Vol.121 (52), p.e2417421121</ispartof><rights>Copyright National Academy of Sciences Dec 24, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-138551f800f22db253dbf7105dff57933c332039eda4c6cb4cf15d78012b6a373</cites><orcidid>0000-0001-6799-5063 ; 0000-0002-5046-0609 ; 0000-0003-0280-4283 ; 0000-0001-7142-882X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39693347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Buchanan, Pearse J</creatorcontrib><creatorcontrib>Zhang, Irene H</creatorcontrib><creatorcontrib>San Roman, Magdalena</creatorcontrib><creatorcontrib>Babbin, Andrew R</creatorcontrib><creatorcontrib>Zakem, Emily J</creatorcontrib><title>Ecological dynamics explain modular denitrification in the ocean</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO →NO →NO→N O→N ), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO and N O in a NO -filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO →NO module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO →NO module. Results also capture observations that NO is the dominant source of N O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.</description><subject>Bacteria - metabolism</subject><subject>Bioavailability</subject><subject>Biological Sciences</subject><subject>Denitrification</subject><subject>Denitrification - physiology</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Environmental gradient</subject><subject>Marine microorganisms</subject><subject>Microorganisms</subject><subject>Modules</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen dioxide</subject><subject>Nitrous oxide</subject><subject>Nitrous Oxide - metabolism</subject><subject>Oceans and Seas</subject><subject>Organic matter</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Seawater - chemistry</subject><subject>Seawater - microbiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtP3TAUhK2qqFxo1-yqSN10EzjHjzhZQYUoRUJiQ9eW4wcYJfatnVTl39cICoXVWcx3RjMaQg4QDhEkO9pGXQ4pR8kpIsV3ZIMwYNvxAd6TDQCVbc8p3yV7pdwBwCB6-EB22dANjHG5ISdnJk3pJhg9NfY-6jmY0rg_20mH2MzJrpPOjXUxLDn4Si0hxaZKy61rknE6fiQ7Xk_FfXq6--Tn97Pr0x_t5dX5xem3y9Yw6JYWWS8E-h7AU2pHKpgdvUQQ1nshaxjDGAU2OKu56czIjUdhZQ9Ix04zyfbJ8aPvdh1nZ42LS9aT2uYw63yvkg7qtRLDrbpJvxViJ2vxrjp8fXLI6dfqyqLmUIybJh1dWotiyCXSATmt6Jc36F1ac6z9KiWwH6jo-kodPVImp1Ky889pENTDPOphHvUyT_34_H-JZ_7fHuwvcrKLfg</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Sun, Xin</creator><creator>Buchanan, Pearse J</creator><creator>Zhang, Irene H</creator><creator>San Roman, Magdalena</creator><creator>Babbin, Andrew R</creator><creator>Zakem, Emily J</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6799-5063</orcidid><orcidid>https://orcid.org/0000-0002-5046-0609</orcidid><orcidid>https://orcid.org/0000-0003-0280-4283</orcidid><orcidid>https://orcid.org/0000-0001-7142-882X</orcidid></search><sort><creationdate>20241224</creationdate><title>Ecological dynamics explain modular denitrification in the ocean</title><author>Sun, Xin ; Buchanan, Pearse J ; Zhang, Irene H ; San Roman, Magdalena ; Babbin, Andrew R ; Zakem, Emily J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-138551f800f22db253dbf7105dff57933c332039eda4c6cb4cf15d78012b6a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria - metabolism</topic><topic>Bioavailability</topic><topic>Biological Sciences</topic><topic>Denitrification</topic><topic>Denitrification - physiology</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Environmental gradient</topic><topic>Marine microorganisms</topic><topic>Microorganisms</topic><topic>Modules</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen dioxide</topic><topic>Nitrous oxide</topic><topic>Nitrous Oxide - metabolism</topic><topic>Oceans and Seas</topic><topic>Organic matter</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Seawater - chemistry</topic><topic>Seawater - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Buchanan, Pearse J</creatorcontrib><creatorcontrib>Zhang, Irene H</creatorcontrib><creatorcontrib>San Roman, Magdalena</creatorcontrib><creatorcontrib>Babbin, Andrew R</creatorcontrib><creatorcontrib>Zakem, Emily J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xin</au><au>Buchanan, Pearse J</au><au>Zhang, Irene H</au><au>San Roman, Magdalena</au><au>Babbin, Andrew R</au><au>Zakem, Emily J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological dynamics explain modular denitrification in the ocean</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>121</volume><issue>52</issue><spage>e2417421121</spage><pages>e2417421121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO →NO →NO→N O→N ), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO and N O in a NO -filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO →NO module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO →NO module. Results also capture observations that NO is the dominant source of N O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39693347</pmid><doi>10.1073/pnas.2417421121</doi><orcidid>https://orcid.org/0000-0001-6799-5063</orcidid><orcidid>https://orcid.org/0000-0002-5046-0609</orcidid><orcidid>https://orcid.org/0000-0003-0280-4283</orcidid><orcidid>https://orcid.org/0000-0001-7142-882X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-12, Vol.121 (52), p.e2417421121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670096
source MEDLINE; Alma/SFX Local Collection
subjects Bacteria - metabolism
Bioavailability
Biological Sciences
Denitrification
Denitrification - physiology
Ecosystem
Ecosystem models
Environmental gradient
Marine microorganisms
Microorganisms
Modules
Nitrogen - metabolism
Nitrogen dioxide
Nitrous oxide
Nitrous Oxide - metabolism
Oceans and Seas
Organic matter
Oxygen
Oxygen - metabolism
Seawater - chemistry
Seawater - microbiology
title Ecological dynamics explain modular denitrification in the ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20dynamics%20explain%20modular%20denitrification%20in%20the%20ocean&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sun,%20Xin&rft.date=2024-12-24&rft.volume=121&rft.issue=52&rft.spage=e2417421121&rft.pages=e2417421121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2417421121&rft_dat=%3Cproquest_pubme%3E3151892568%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151892568&rft_id=info:pmid/39693347&rfr_iscdi=true