Ecological dynamics explain modular denitrification in the ocean
Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO →NO →NO→N O→N ), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N O) production. Denitrification-derived N loss is typicall...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-12, Vol.121 (52), p.e2417421121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 52 |
container_start_page | e2417421121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Sun, Xin Buchanan, Pearse J Zhang, Irene H San Roman, Magdalena Babbin, Andrew R Zakem, Emily J |
description | Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO
→NO
→NO→N
O→N
), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N
O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO
and N
O in a NO
-filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO
→NO
module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO
→NO
module. Results also capture observations that NO
is the dominant source of N
O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments. |
doi_str_mv | 10.1073/pnas.2417421121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151892568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-138551f800f22db253dbf7105dff57933c332039eda4c6cb4cf15d78012b6a373</originalsourceid><addsrcrecordid>eNpdkUtP3TAUhK2qqFxo1-yqSN10EzjHjzhZQYUoRUJiQ9eW4wcYJfatnVTl39cICoXVWcx3RjMaQg4QDhEkO9pGXQ4pR8kpIsV3ZIMwYNvxAd6TDQCVbc8p3yV7pdwBwCB6-EB22dANjHG5ISdnJk3pJhg9NfY-6jmY0rg_20mH2MzJrpPOjXUxLDn4Si0hxaZKy61rknE6fiQ7Xk_FfXq6--Tn97Pr0x_t5dX5xem3y9Yw6JYWWS8E-h7AU2pHKpgdvUQQ1nshaxjDGAU2OKu56czIjUdhZQ9Ix04zyfbJ8aPvdh1nZ42LS9aT2uYw63yvkg7qtRLDrbpJvxViJ2vxrjp8fXLI6dfqyqLmUIybJh1dWotiyCXSATmt6Jc36F1ac6z9KiWwH6jo-kodPVImp1Ky889pENTDPOphHvUyT_34_H-JZ_7fHuwvcrKLfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151892568</pqid></control><display><type>article</type><title>Ecological dynamics explain modular denitrification in the ocean</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Sun, Xin ; Buchanan, Pearse J ; Zhang, Irene H ; San Roman, Magdalena ; Babbin, Andrew R ; Zakem, Emily J</creator><creatorcontrib>Sun, Xin ; Buchanan, Pearse J ; Zhang, Irene H ; San Roman, Magdalena ; Babbin, Andrew R ; Zakem, Emily J</creatorcontrib><description>Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO
→NO
→NO→N
O→N
), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N
O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO
and N
O in a NO
-filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO
→NO
module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO
→NO
module. Results also capture observations that NO
is the dominant source of N
O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2417421121</identifier><identifier>PMID: 39693347</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria - metabolism ; Bioavailability ; Biological Sciences ; Denitrification ; Denitrification - physiology ; Ecosystem ; Ecosystem models ; Environmental gradient ; Marine microorganisms ; Microorganisms ; Modules ; Nitrogen - metabolism ; Nitrogen dioxide ; Nitrous oxide ; Nitrous Oxide - metabolism ; Oceans and Seas ; Organic matter ; Oxygen ; Oxygen - metabolism ; Seawater - chemistry ; Seawater - microbiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-12, Vol.121 (52), p.e2417421121</ispartof><rights>Copyright National Academy of Sciences Dec 24, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-138551f800f22db253dbf7105dff57933c332039eda4c6cb4cf15d78012b6a373</cites><orcidid>0000-0001-6799-5063 ; 0000-0002-5046-0609 ; 0000-0003-0280-4283 ; 0000-0001-7142-882X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39693347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Buchanan, Pearse J</creatorcontrib><creatorcontrib>Zhang, Irene H</creatorcontrib><creatorcontrib>San Roman, Magdalena</creatorcontrib><creatorcontrib>Babbin, Andrew R</creatorcontrib><creatorcontrib>Zakem, Emily J</creatorcontrib><title>Ecological dynamics explain modular denitrification in the ocean</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO
→NO
→NO→N
O→N
), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N
O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO
and N
O in a NO
-filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO
→NO
module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO
→NO
module. Results also capture observations that NO
is the dominant source of N
O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.</description><subject>Bacteria - metabolism</subject><subject>Bioavailability</subject><subject>Biological Sciences</subject><subject>Denitrification</subject><subject>Denitrification - physiology</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Environmental gradient</subject><subject>Marine microorganisms</subject><subject>Microorganisms</subject><subject>Modules</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen dioxide</subject><subject>Nitrous oxide</subject><subject>Nitrous Oxide - metabolism</subject><subject>Oceans and Seas</subject><subject>Organic matter</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Seawater - chemistry</subject><subject>Seawater - microbiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtP3TAUhK2qqFxo1-yqSN10EzjHjzhZQYUoRUJiQ9eW4wcYJfatnVTl39cICoXVWcx3RjMaQg4QDhEkO9pGXQ4pR8kpIsV3ZIMwYNvxAd6TDQCVbc8p3yV7pdwBwCB6-EB22dANjHG5ISdnJk3pJhg9NfY-6jmY0rg_20mH2MzJrpPOjXUxLDn4Si0hxaZKy61rknE6fiQ7Xk_FfXq6--Tn97Pr0x_t5dX5xem3y9Yw6JYWWS8E-h7AU2pHKpgdvUQQ1nshaxjDGAU2OKu56czIjUdhZQ9Ix04zyfbJ8aPvdh1nZ42LS9aT2uYw63yvkg7qtRLDrbpJvxViJ2vxrjp8fXLI6dfqyqLmUIybJh1dWotiyCXSATmt6Jc36F1ac6z9KiWwH6jo-kodPVImp1Ky889pENTDPOphHvUyT_34_H-JZ_7fHuwvcrKLfg</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Sun, Xin</creator><creator>Buchanan, Pearse J</creator><creator>Zhang, Irene H</creator><creator>San Roman, Magdalena</creator><creator>Babbin, Andrew R</creator><creator>Zakem, Emily J</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6799-5063</orcidid><orcidid>https://orcid.org/0000-0002-5046-0609</orcidid><orcidid>https://orcid.org/0000-0003-0280-4283</orcidid><orcidid>https://orcid.org/0000-0001-7142-882X</orcidid></search><sort><creationdate>20241224</creationdate><title>Ecological dynamics explain modular denitrification in the ocean</title><author>Sun, Xin ; Buchanan, Pearse J ; Zhang, Irene H ; San Roman, Magdalena ; Babbin, Andrew R ; Zakem, Emily J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-138551f800f22db253dbf7105dff57933c332039eda4c6cb4cf15d78012b6a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria - metabolism</topic><topic>Bioavailability</topic><topic>Biological Sciences</topic><topic>Denitrification</topic><topic>Denitrification - physiology</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Environmental gradient</topic><topic>Marine microorganisms</topic><topic>Microorganisms</topic><topic>Modules</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen dioxide</topic><topic>Nitrous oxide</topic><topic>Nitrous Oxide - metabolism</topic><topic>Oceans and Seas</topic><topic>Organic matter</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Seawater - chemistry</topic><topic>Seawater - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Buchanan, Pearse J</creatorcontrib><creatorcontrib>Zhang, Irene H</creatorcontrib><creatorcontrib>San Roman, Magdalena</creatorcontrib><creatorcontrib>Babbin, Andrew R</creatorcontrib><creatorcontrib>Zakem, Emily J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xin</au><au>Buchanan, Pearse J</au><au>Zhang, Irene H</au><au>San Roman, Magdalena</au><au>Babbin, Andrew R</au><au>Zakem, Emily J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological dynamics explain modular denitrification in the ocean</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>121</volume><issue>52</issue><spage>e2417421121</spage><pages>e2417421121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO
→NO
→NO→N
O→N
), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N
O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO
and N
O in a NO
-filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO
→NO
module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO
→NO
module. Results also capture observations that NO
is the dominant source of N
O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39693347</pmid><doi>10.1073/pnas.2417421121</doi><orcidid>https://orcid.org/0000-0001-6799-5063</orcidid><orcidid>https://orcid.org/0000-0002-5046-0609</orcidid><orcidid>https://orcid.org/0000-0003-0280-4283</orcidid><orcidid>https://orcid.org/0000-0001-7142-882X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-12, Vol.121 (52), p.e2417421121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11670096 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Bacteria - metabolism Bioavailability Biological Sciences Denitrification Denitrification - physiology Ecosystem Ecosystem models Environmental gradient Marine microorganisms Microorganisms Modules Nitrogen - metabolism Nitrogen dioxide Nitrous oxide Nitrous Oxide - metabolism Oceans and Seas Organic matter Oxygen Oxygen - metabolism Seawater - chemistry Seawater - microbiology |
title | Ecological dynamics explain modular denitrification in the ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20dynamics%20explain%20modular%20denitrification%20in%20the%20ocean&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sun,%20Xin&rft.date=2024-12-24&rft.volume=121&rft.issue=52&rft.spage=e2417421121&rft.pages=e2417421121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2417421121&rft_dat=%3Cproquest_pubme%3E3151892568%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151892568&rft_id=info:pmid/39693347&rfr_iscdi=true |