Epithelial-Mesenchymal Transition Induced by a Metal Mixture in Liver Cells With Antioxidant Barrier Decreased
Occupational exposure to arsenic (As), cadmium (Cd), and lead (Pb) affects many sectors, necessitating research to understand their transformation mechanisms. In this study, we characterized the process of epithelial-mesenchymal transition (EMT) in a rat hepatic epithelial cell line with decreased e...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2024, Vol.2024 (1), p.6983256 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Occupational exposure to arsenic (As), cadmium (Cd), and lead (Pb) affects many sectors, necessitating research to understand their transformation mechanisms. In this study, we characterized the process of epithelial-mesenchymal transition (EMT) in a rat hepatic epithelial cell line with decreased expression of catalase and glutamate cysteine ligase catalytic (GCLC) subunit that was exposed to a mixture of As, Cd, and Pb at equimolar occupational exposure concentrations. We evaluated the expression of genes and proteins involved in EMT. Our findings revealed that cells with a decreased antioxidant barrier showed a decreased expression and abundance of epithelial genes when exposed to a mixture of metals. Additionally, we observed alterations in the expression of transcription factors (TFs) associated with EMT and an increase in the expression and abundance of mesenchymal genes. Specifically, we found that E-cadherin expression decreased by ~50% at both the gene and protein levels. In contrast, the expression of
,
, and
genes increased by ~70%, whereas their corresponding protein levels increased by nearly 100%. Furthermore, the TFs zinc finger e-box binding homeobox 1 and snail family transcriptional repressor 1 showed a 30% increase in gene expression and an ~80% increase in protein expression. These changes enable the cells to acquire migratory capabilities. Our results confirmed that exposure to this mixture of As, Cd, and Pb can induce EMT in cells with a decreased antioxidant barrier. |
---|---|
ISSN: | 1942-0900 1942-0994 1942-0994 |
DOI: | 10.1155/omcl/6983256 |