On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP

Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2024-12, Vol.481 (24), p.1901-1920
Hauptverfasser: Newton-Vesty, Michael C, Currie, Michael J, Davies, James S, Panjikar, Santosh, Sethi, Ashish, Whitten, Andrew E, Tillett, Zachary D, Wood, David M, Wright, Joshua D, Love, Michael J, Allison, Timothy M, Jamieson, Sam A, Mace, Peter D, North, Rachel A, Dobson, Renwick C J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1920
container_issue 24
container_start_page 1901
container_title Biochemical journal
container_volume 481
creator Newton-Vesty, Michael C
Currie, Michael J
Davies, James S
Panjikar, Santosh
Sethi, Ashish
Whitten, Andrew E
Tillett, Zachary D
Wood, David M
Wright, Joshua D
Love, Michael J
Allison, Timothy M
Jamieson, Sam A
Mace, Peter D
North, Rachel A
Dobson, Renwick C J
description Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.
doi_str_mv 10.1042/BCJ20240540
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11668362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130210531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-2b1364ff3e5d31b04f24d7baa5f0ddd7ca3cf6f71670ca8f10e72d76d44fb9b73</originalsourceid><addsrcrecordid>eNpdkctLw0AQxhdRbK2evEuOgkRnH9mNXqQWnwiK6HnZZ7uSbmo2EfzvTbVK9TQw85tvPuZDaB_DMQZGTi4mdwQIg4LBBhpiJiAvBSk30RAIZzkHggdoJ6VXAMyAwTYa0NOib5diiNRDzNqZy3wXTRvqmNU-e34aP2ap06ltVOtyHaINcZotmrp1Iaazr4WQXDvrF5ZEWjgTfDDZPzS7Te5xF215VSW3t6oj9HJ1-Ty5ye8frm8n4_vcEErbnGhMOfOeusJSrIF5wqzQShUerLXCKGo89wJzAUaVHoMTxApuGfP6VAs6QuffuotOz501Lvb2K7lowlw1H7JWQf6dxDCT0_pdYsx5STnpFQ5XCk391rnUynlIxlWViq7ukqSY9r-Eoq8jdPSNmqZOqXH-9w4GuUxFrqXS0wfr1n7ZnxjoJ7IJiYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130210531</pqid></control><display><type>article</type><title>On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Newton-Vesty, Michael C ; Currie, Michael J ; Davies, James S ; Panjikar, Santosh ; Sethi, Ashish ; Whitten, Andrew E ; Tillett, Zachary D ; Wood, David M ; Wright, Joshua D ; Love, Michael J ; Allison, Timothy M ; Jamieson, Sam A ; Mace, Peter D ; North, Rachel A ; Dobson, Renwick C J</creator><creatorcontrib>Newton-Vesty, Michael C ; Currie, Michael J ; Davies, James S ; Panjikar, Santosh ; Sethi, Ashish ; Whitten, Andrew E ; Tillett, Zachary D ; Wood, David M ; Wright, Joshua D ; Love, Michael J ; Allison, Timothy M ; Jamieson, Sam A ; Mace, Peter D ; North, Rachel A ; Dobson, Renwick C J</creatorcontrib><description>Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.</description><identifier>ISSN: 0264-6021</identifier><identifier>ISSN: 1470-8728</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20240540</identifier><identifier>PMID: 39560287</identifier><language>eng</language><publisher>England: Portland Press Ltd</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Cell Membranes, Excitation &amp; Transport ; Crystallography, X-Ray ; Enzymology ; Periplasmic Binding Proteins - chemistry ; Periplasmic Binding Proteins - genetics ; Periplasmic Binding Proteins - metabolism ; Protein Binding ; Structural Biology ; Substrate Specificity</subject><ispartof>Biochemical journal, 2024-12, Vol.481 (24), p.1901-1920</ispartof><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5506-4939 ; 0000-0003-4100-6700 ; 0009-0001-8353-8169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39560287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newton-Vesty, Michael C</creatorcontrib><creatorcontrib>Currie, Michael J</creatorcontrib><creatorcontrib>Davies, James S</creatorcontrib><creatorcontrib>Panjikar, Santosh</creatorcontrib><creatorcontrib>Sethi, Ashish</creatorcontrib><creatorcontrib>Whitten, Andrew E</creatorcontrib><creatorcontrib>Tillett, Zachary D</creatorcontrib><creatorcontrib>Wood, David M</creatorcontrib><creatorcontrib>Wright, Joshua D</creatorcontrib><creatorcontrib>Love, Michael J</creatorcontrib><creatorcontrib>Allison, Timothy M</creatorcontrib><creatorcontrib>Jamieson, Sam A</creatorcontrib><creatorcontrib>Mace, Peter D</creatorcontrib><creatorcontrib>North, Rachel A</creatorcontrib><creatorcontrib>Dobson, Renwick C J</creatorcontrib><title>On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Cell Membranes, Excitation &amp; Transport</subject><subject>Crystallography, X-Ray</subject><subject>Enzymology</subject><subject>Periplasmic Binding Proteins - chemistry</subject><subject>Periplasmic Binding Proteins - genetics</subject><subject>Periplasmic Binding Proteins - metabolism</subject><subject>Protein Binding</subject><subject>Structural Biology</subject><subject>Substrate Specificity</subject><issn>0264-6021</issn><issn>1470-8728</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLw0AQxhdRbK2evEuOgkRnH9mNXqQWnwiK6HnZZ7uSbmo2EfzvTbVK9TQw85tvPuZDaB_DMQZGTi4mdwQIg4LBBhpiJiAvBSk30RAIZzkHggdoJ6VXAMyAwTYa0NOib5diiNRDzNqZy3wXTRvqmNU-e34aP2ap06ltVOtyHaINcZotmrp1Iaazr4WQXDvrF5ZEWjgTfDDZPzS7Te5xF215VSW3t6oj9HJ1-Ty5ye8frm8n4_vcEErbnGhMOfOeusJSrIF5wqzQShUerLXCKGo89wJzAUaVHoMTxApuGfP6VAs6QuffuotOz501Lvb2K7lowlw1H7JWQf6dxDCT0_pdYsx5STnpFQ5XCk391rnUynlIxlWViq7ukqSY9r-Eoq8jdPSNmqZOqXH-9w4GuUxFrqXS0wfr1n7ZnxjoJ7IJiYU</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Newton-Vesty, Michael C</creator><creator>Currie, Michael J</creator><creator>Davies, James S</creator><creator>Panjikar, Santosh</creator><creator>Sethi, Ashish</creator><creator>Whitten, Andrew E</creator><creator>Tillett, Zachary D</creator><creator>Wood, David M</creator><creator>Wright, Joshua D</creator><creator>Love, Michael J</creator><creator>Allison, Timothy M</creator><creator>Jamieson, Sam A</creator><creator>Mace, Peter D</creator><creator>North, Rachel A</creator><creator>Dobson, Renwick C J</creator><general>Portland Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5506-4939</orcidid><orcidid>https://orcid.org/0000-0003-4100-6700</orcidid><orcidid>https://orcid.org/0009-0001-8353-8169</orcidid></search><sort><creationdate>20241218</creationdate><title>On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP</title><author>Newton-Vesty, Michael C ; Currie, Michael J ; Davies, James S ; Panjikar, Santosh ; Sethi, Ashish ; Whitten, Andrew E ; Tillett, Zachary D ; Wood, David M ; Wright, Joshua D ; Love, Michael J ; Allison, Timothy M ; Jamieson, Sam A ; Mace, Peter D ; North, Rachel A ; Dobson, Renwick C J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-2b1364ff3e5d31b04f24d7baa5f0ddd7ca3cf6f71670ca8f10e72d76d44fb9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Cell Membranes, Excitation &amp; Transport</topic><topic>Crystallography, X-Ray</topic><topic>Enzymology</topic><topic>Periplasmic Binding Proteins - chemistry</topic><topic>Periplasmic Binding Proteins - genetics</topic><topic>Periplasmic Binding Proteins - metabolism</topic><topic>Protein Binding</topic><topic>Structural Biology</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newton-Vesty, Michael C</creatorcontrib><creatorcontrib>Currie, Michael J</creatorcontrib><creatorcontrib>Davies, James S</creatorcontrib><creatorcontrib>Panjikar, Santosh</creatorcontrib><creatorcontrib>Sethi, Ashish</creatorcontrib><creatorcontrib>Whitten, Andrew E</creatorcontrib><creatorcontrib>Tillett, Zachary D</creatorcontrib><creatorcontrib>Wood, David M</creatorcontrib><creatorcontrib>Wright, Joshua D</creatorcontrib><creatorcontrib>Love, Michael J</creatorcontrib><creatorcontrib>Allison, Timothy M</creatorcontrib><creatorcontrib>Jamieson, Sam A</creatorcontrib><creatorcontrib>Mace, Peter D</creatorcontrib><creatorcontrib>North, Rachel A</creatorcontrib><creatorcontrib>Dobson, Renwick C J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newton-Vesty, Michael C</au><au>Currie, Michael J</au><au>Davies, James S</au><au>Panjikar, Santosh</au><au>Sethi, Ashish</au><au>Whitten, Andrew E</au><au>Tillett, Zachary D</au><au>Wood, David M</au><au>Wright, Joshua D</au><au>Love, Michael J</au><au>Allison, Timothy M</au><au>Jamieson, Sam A</au><au>Mace, Peter D</au><au>North, Rachel A</au><au>Dobson, Renwick C J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>481</volume><issue>24</issue><spage>1901</spage><epage>1920</epage><pages>1901-1920</pages><issn>0264-6021</issn><issn>1470-8728</issn><eissn>1470-8728</eissn><abstract>Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.</abstract><cop>England</cop><pub>Portland Press Ltd</pub><pmid>39560287</pmid><doi>10.1042/BCJ20240540</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5506-4939</orcidid><orcidid>https://orcid.org/0000-0003-4100-6700</orcidid><orcidid>https://orcid.org/0009-0001-8353-8169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2024-12, Vol.481 (24), p.1901-1920
issn 0264-6021
1470-8728
1470-8728
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11668362
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Cell Membranes, Excitation & Transport
Crystallography, X-Ray
Enzymology
Periplasmic Binding Proteins - chemistry
Periplasmic Binding Proteins - genetics
Periplasmic Binding Proteins - metabolism
Protein Binding
Structural Biology
Substrate Specificity
title On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20function%20of%20TRAP%20substrate-binding%20proteins:%20the%20isethionate-specific%20binding%20protein%20IseP&rft.jtitle=Biochemical%20journal&rft.au=Newton-Vesty,%20Michael%20C&rft.date=2024-12-18&rft.volume=481&rft.issue=24&rft.spage=1901&rft.epage=1920&rft.pages=1901-1920&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20240540&rft_dat=%3Cproquest_pubme%3E3130210531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130210531&rft_id=info:pmid/39560287&rfr_iscdi=true