Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis
This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care. One-hundred and tw...
Gespeichert in:
Veröffentlicht in: | BMC psychiatry 2024-12, Vol.24 (1), p.942 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 942 |
container_title | BMC psychiatry |
container_volume | 24 |
creator | Jaffé, Mariela E Weinmann, Stefan Meyer, Andrea H Stepulovs, Helen Luethi, Regula Borgwardt, Stefan Lieb, Roselind Lang, Undine E Huber, Christian G Moeller, Julian |
description | This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care.
One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period.
Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R
values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models.
High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments. |
doi_str_mv | 10.1186/s12888-024-06388-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11667975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148842102</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1125-827c2a167e9e51d2469fa436055f2415f9ccd2cb0595bb8928b732cd65bc39cd3</originalsourceid><addsrcrecordid>eNpVkE1rGzEQhkVpaJy0f6CHoGMvm2i0-swlBJMvMOSQFnpbtFqtrSJrN9I6rf3rq1InOKeZeWd4Xt5B6CuQcwAlLjJQpVRFKKuIqEsnPqAZMAkVZeznx4P-GJ3k_IsQkIrDJ3RcawmCaDlDu5s_YxiSj0tsh5RcMJPLeOjxyi9XeMxbu_JmSt5iH0czeRcnvJl88LsyDLGo-Om3n3YuBRO7S2xw57JNfpz8i8NFwmtTENHh4EyK_3xMNGGbff6MjnoTsvuyr6fox-3N9_l9tXi8e5hfL6oRgPJKUWmpASGddhw6yoTuDasF4bynDHivre2obQnXvG2VpqqVNbWd4K2tte3qU3T1nztu2rXrbImQTGjG5NcmbZvB-Ob9JvpVsxxeGgAhpJa8EL7tCWl43rg8NWufrQslshs2uamBKcUoEFpOzw7N3lxeP17_BXjqh5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148842102</pqid></control><display><type>article</type><title>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jaffé, Mariela E ; Weinmann, Stefan ; Meyer, Andrea H ; Stepulovs, Helen ; Luethi, Regula ; Borgwardt, Stefan ; Lieb, Roselind ; Lang, Undine E ; Huber, Christian G ; Moeller, Julian</creator><creatorcontrib>Jaffé, Mariela E ; Weinmann, Stefan ; Meyer, Andrea H ; Stepulovs, Helen ; Luethi, Regula ; Borgwardt, Stefan ; Lieb, Roselind ; Lang, Undine E ; Huber, Christian G ; Moeller, Julian</creatorcontrib><description>This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care.
One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period.
Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R
values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models.
High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.</description><identifier>ISSN: 1471-244X</identifier><identifier>EISSN: 1471-244X</identifier><identifier>DOI: 10.1186/s12888-024-06388-6</identifier><identifier>PMID: 39716097</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Adult ; Aged ; Cross-Sectional Studies ; Female ; Hospitalization - statistics & numerical data ; Hospitals, Psychiatric - statistics & numerical data ; Humans ; Inpatients - psychology ; Inpatients - statistics & numerical data ; Machine Learning ; Male ; Mental Disorders - epidemiology ; Mental Disorders - therapy ; Mental Health Services - statistics & numerical data ; Middle Aged ; Patient Acceptance of Health Care - statistics & numerical data ; Switzerland</subject><ispartof>BMC psychiatry, 2024-12, Vol.24 (1), p.942</ispartof><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667975/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667975/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39716097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaffé, Mariela E</creatorcontrib><creatorcontrib>Weinmann, Stefan</creatorcontrib><creatorcontrib>Meyer, Andrea H</creatorcontrib><creatorcontrib>Stepulovs, Helen</creatorcontrib><creatorcontrib>Luethi, Regula</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Lieb, Roselind</creatorcontrib><creatorcontrib>Lang, Undine E</creatorcontrib><creatorcontrib>Huber, Christian G</creatorcontrib><creatorcontrib>Moeller, Julian</creatorcontrib><title>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</title><title>BMC psychiatry</title><addtitle>BMC Psychiatry</addtitle><description>This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care.
One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period.
Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R
values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models.
High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.</description><subject>Adult</subject><subject>Aged</subject><subject>Cross-Sectional Studies</subject><subject>Female</subject><subject>Hospitalization - statistics & numerical data</subject><subject>Hospitals, Psychiatric - statistics & numerical data</subject><subject>Humans</subject><subject>Inpatients - psychology</subject><subject>Inpatients - statistics & numerical data</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mental Disorders - epidemiology</subject><subject>Mental Disorders - therapy</subject><subject>Mental Health Services - statistics & numerical data</subject><subject>Middle Aged</subject><subject>Patient Acceptance of Health Care - statistics & numerical data</subject><subject>Switzerland</subject><issn>1471-244X</issn><issn>1471-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1rGzEQhkVpaJy0f6CHoGMvm2i0-swlBJMvMOSQFnpbtFqtrSJrN9I6rf3rq1InOKeZeWd4Xt5B6CuQcwAlLjJQpVRFKKuIqEsnPqAZMAkVZeznx4P-GJ3k_IsQkIrDJ3RcawmCaDlDu5s_YxiSj0tsh5RcMJPLeOjxyi9XeMxbu_JmSt5iH0czeRcnvJl88LsyDLGo-Om3n3YuBRO7S2xw57JNfpz8i8NFwmtTENHh4EyK_3xMNGGbff6MjnoTsvuyr6fox-3N9_l9tXi8e5hfL6oRgPJKUWmpASGddhw6yoTuDasF4bynDHivre2obQnXvG2VpqqVNbWd4K2tte3qU3T1nztu2rXrbImQTGjG5NcmbZvB-Ob9JvpVsxxeGgAhpJa8EL7tCWl43rg8NWufrQslshs2uamBKcUoEFpOzw7N3lxeP17_BXjqh5c</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Jaffé, Mariela E</creator><creator>Weinmann, Stefan</creator><creator>Meyer, Andrea H</creator><creator>Stepulovs, Helen</creator><creator>Luethi, Regula</creator><creator>Borgwardt, Stefan</creator><creator>Lieb, Roselind</creator><creator>Lang, Undine E</creator><creator>Huber, Christian G</creator><creator>Moeller, Julian</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241223</creationdate><title>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</title><author>Jaffé, Mariela E ; Weinmann, Stefan ; Meyer, Andrea H ; Stepulovs, Helen ; Luethi, Regula ; Borgwardt, Stefan ; Lieb, Roselind ; Lang, Undine E ; Huber, Christian G ; Moeller, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1125-827c2a167e9e51d2469fa436055f2415f9ccd2cb0595bb8928b732cd65bc39cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Cross-Sectional Studies</topic><topic>Female</topic><topic>Hospitalization - statistics & numerical data</topic><topic>Hospitals, Psychiatric - statistics & numerical data</topic><topic>Humans</topic><topic>Inpatients - psychology</topic><topic>Inpatients - statistics & numerical data</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mental Disorders - epidemiology</topic><topic>Mental Disorders - therapy</topic><topic>Mental Health Services - statistics & numerical data</topic><topic>Middle Aged</topic><topic>Patient Acceptance of Health Care - statistics & numerical data</topic><topic>Switzerland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffé, Mariela E</creatorcontrib><creatorcontrib>Weinmann, Stefan</creatorcontrib><creatorcontrib>Meyer, Andrea H</creatorcontrib><creatorcontrib>Stepulovs, Helen</creatorcontrib><creatorcontrib>Luethi, Regula</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Lieb, Roselind</creatorcontrib><creatorcontrib>Lang, Undine E</creatorcontrib><creatorcontrib>Huber, Christian G</creatorcontrib><creatorcontrib>Moeller, Julian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffé, Mariela E</au><au>Weinmann, Stefan</au><au>Meyer, Andrea H</au><au>Stepulovs, Helen</au><au>Luethi, Regula</au><au>Borgwardt, Stefan</au><au>Lieb, Roselind</au><au>Lang, Undine E</au><au>Huber, Christian G</au><au>Moeller, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</atitle><jtitle>BMC psychiatry</jtitle><addtitle>BMC Psychiatry</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>942</spage><pages>942-</pages><issn>1471-244X</issn><eissn>1471-244X</eissn><abstract>This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care.
One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period.
Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R
values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models.
High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>39716097</pmid><doi>10.1186/s12888-024-06388-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-244X |
ispartof | BMC psychiatry, 2024-12, Vol.24 (1), p.942 |
issn | 1471-244X 1471-244X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11667975 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Aged Cross-Sectional Studies Female Hospitalization - statistics & numerical data Hospitals, Psychiatric - statistics & numerical data Humans Inpatients - psychology Inpatients - statistics & numerical data Machine Learning Male Mental Disorders - epidemiology Mental Disorders - therapy Mental Health Services - statistics & numerical data Middle Aged Patient Acceptance of Health Care - statistics & numerical data Switzerland |
title | Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20correlates%20of%20high%20psychiatric%20inpatient%20utilization%20in%20Switzerland:%20a%20descriptive%20and%20machine%20learning%20analysis&rft.jtitle=BMC%20psychiatry&rft.au=Jaff%C3%A9,%20Mariela%20E&rft.date=2024-12-23&rft.volume=24&rft.issue=1&rft.spage=942&rft.pages=942-&rft.issn=1471-244X&rft.eissn=1471-244X&rft_id=info:doi/10.1186/s12888-024-06388-6&rft_dat=%3Cproquest_pubme%3E3148842102%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148842102&rft_id=info:pmid/39716097&rfr_iscdi=true |