Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis

This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care. One-hundred and tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC psychiatry 2024-12, Vol.24 (1), p.942
Hauptverfasser: Jaffé, Mariela E, Weinmann, Stefan, Meyer, Andrea H, Stepulovs, Helen, Luethi, Regula, Borgwardt, Stefan, Lieb, Roselind, Lang, Undine E, Huber, Christian G, Moeller, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 942
container_title BMC psychiatry
container_volume 24
creator Jaffé, Mariela E
Weinmann, Stefan
Meyer, Andrea H
Stepulovs, Helen
Luethi, Regula
Borgwardt, Stefan
Lieb, Roselind
Lang, Undine E
Huber, Christian G
Moeller, Julian
description This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care. One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period. Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models. High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.
doi_str_mv 10.1186/s12888-024-06388-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11667975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148842102</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1125-827c2a167e9e51d2469fa436055f2415f9ccd2cb0595bb8928b732cd65bc39cd3</originalsourceid><addsrcrecordid>eNpVkE1rGzEQhkVpaJy0f6CHoGMvm2i0-swlBJMvMOSQFnpbtFqtrSJrN9I6rf3rq1InOKeZeWd4Xt5B6CuQcwAlLjJQpVRFKKuIqEsnPqAZMAkVZeznx4P-GJ3k_IsQkIrDJ3RcawmCaDlDu5s_YxiSj0tsh5RcMJPLeOjxyi9XeMxbu_JmSt5iH0czeRcnvJl88LsyDLGo-Om3n3YuBRO7S2xw57JNfpz8i8NFwmtTENHh4EyK_3xMNGGbff6MjnoTsvuyr6fox-3N9_l9tXi8e5hfL6oRgPJKUWmpASGddhw6yoTuDasF4bynDHivre2obQnXvG2VpqqVNbWd4K2tte3qU3T1nztu2rXrbImQTGjG5NcmbZvB-Ob9JvpVsxxeGgAhpJa8EL7tCWl43rg8NWufrQslshs2uamBKcUoEFpOzw7N3lxeP17_BXjqh5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148842102</pqid></control><display><type>article</type><title>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jaffé, Mariela E ; Weinmann, Stefan ; Meyer, Andrea H ; Stepulovs, Helen ; Luethi, Regula ; Borgwardt, Stefan ; Lieb, Roselind ; Lang, Undine E ; Huber, Christian G ; Moeller, Julian</creator><creatorcontrib>Jaffé, Mariela E ; Weinmann, Stefan ; Meyer, Andrea H ; Stepulovs, Helen ; Luethi, Regula ; Borgwardt, Stefan ; Lieb, Roselind ; Lang, Undine E ; Huber, Christian G ; Moeller, Julian</creatorcontrib><description>This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care. One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period. Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models. High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.</description><identifier>ISSN: 1471-244X</identifier><identifier>EISSN: 1471-244X</identifier><identifier>DOI: 10.1186/s12888-024-06388-6</identifier><identifier>PMID: 39716097</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Adult ; Aged ; Cross-Sectional Studies ; Female ; Hospitalization - statistics &amp; numerical data ; Hospitals, Psychiatric - statistics &amp; numerical data ; Humans ; Inpatients - psychology ; Inpatients - statistics &amp; numerical data ; Machine Learning ; Male ; Mental Disorders - epidemiology ; Mental Disorders - therapy ; Mental Health Services - statistics &amp; numerical data ; Middle Aged ; Patient Acceptance of Health Care - statistics &amp; numerical data ; Switzerland</subject><ispartof>BMC psychiatry, 2024-12, Vol.24 (1), p.942</ispartof><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667975/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667975/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39716097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaffé, Mariela E</creatorcontrib><creatorcontrib>Weinmann, Stefan</creatorcontrib><creatorcontrib>Meyer, Andrea H</creatorcontrib><creatorcontrib>Stepulovs, Helen</creatorcontrib><creatorcontrib>Luethi, Regula</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Lieb, Roselind</creatorcontrib><creatorcontrib>Lang, Undine E</creatorcontrib><creatorcontrib>Huber, Christian G</creatorcontrib><creatorcontrib>Moeller, Julian</creatorcontrib><title>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</title><title>BMC psychiatry</title><addtitle>BMC Psychiatry</addtitle><description>This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care. One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period. Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models. High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.</description><subject>Adult</subject><subject>Aged</subject><subject>Cross-Sectional Studies</subject><subject>Female</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Hospitals, Psychiatric - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Inpatients - psychology</subject><subject>Inpatients - statistics &amp; numerical data</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mental Disorders - epidemiology</subject><subject>Mental Disorders - therapy</subject><subject>Mental Health Services - statistics &amp; numerical data</subject><subject>Middle Aged</subject><subject>Patient Acceptance of Health Care - statistics &amp; numerical data</subject><subject>Switzerland</subject><issn>1471-244X</issn><issn>1471-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1rGzEQhkVpaJy0f6CHoGMvm2i0-swlBJMvMOSQFnpbtFqtrSJrN9I6rf3rq1InOKeZeWd4Xt5B6CuQcwAlLjJQpVRFKKuIqEsnPqAZMAkVZeznx4P-GJ3k_IsQkIrDJ3RcawmCaDlDu5s_YxiSj0tsh5RcMJPLeOjxyi9XeMxbu_JmSt5iH0czeRcnvJl88LsyDLGo-Om3n3YuBRO7S2xw57JNfpz8i8NFwmtTENHh4EyK_3xMNGGbff6MjnoTsvuyr6fox-3N9_l9tXi8e5hfL6oRgPJKUWmpASGddhw6yoTuDasF4bynDHivre2obQnXvG2VpqqVNbWd4K2tte3qU3T1nztu2rXrbImQTGjG5NcmbZvB-Ob9JvpVsxxeGgAhpJa8EL7tCWl43rg8NWufrQslshs2uamBKcUoEFpOzw7N3lxeP17_BXjqh5c</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Jaffé, Mariela E</creator><creator>Weinmann, Stefan</creator><creator>Meyer, Andrea H</creator><creator>Stepulovs, Helen</creator><creator>Luethi, Regula</creator><creator>Borgwardt, Stefan</creator><creator>Lieb, Roselind</creator><creator>Lang, Undine E</creator><creator>Huber, Christian G</creator><creator>Moeller, Julian</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241223</creationdate><title>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</title><author>Jaffé, Mariela E ; Weinmann, Stefan ; Meyer, Andrea H ; Stepulovs, Helen ; Luethi, Regula ; Borgwardt, Stefan ; Lieb, Roselind ; Lang, Undine E ; Huber, Christian G ; Moeller, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1125-827c2a167e9e51d2469fa436055f2415f9ccd2cb0595bb8928b732cd65bc39cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Cross-Sectional Studies</topic><topic>Female</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Hospitals, Psychiatric - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Inpatients - psychology</topic><topic>Inpatients - statistics &amp; numerical data</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mental Disorders - epidemiology</topic><topic>Mental Disorders - therapy</topic><topic>Mental Health Services - statistics &amp; numerical data</topic><topic>Middle Aged</topic><topic>Patient Acceptance of Health Care - statistics &amp; numerical data</topic><topic>Switzerland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffé, Mariela E</creatorcontrib><creatorcontrib>Weinmann, Stefan</creatorcontrib><creatorcontrib>Meyer, Andrea H</creatorcontrib><creatorcontrib>Stepulovs, Helen</creatorcontrib><creatorcontrib>Luethi, Regula</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Lieb, Roselind</creatorcontrib><creatorcontrib>Lang, Undine E</creatorcontrib><creatorcontrib>Huber, Christian G</creatorcontrib><creatorcontrib>Moeller, Julian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffé, Mariela E</au><au>Weinmann, Stefan</au><au>Meyer, Andrea H</au><au>Stepulovs, Helen</au><au>Luethi, Regula</au><au>Borgwardt, Stefan</au><au>Lieb, Roselind</au><au>Lang, Undine E</au><au>Huber, Christian G</au><au>Moeller, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis</atitle><jtitle>BMC psychiatry</jtitle><addtitle>BMC Psychiatry</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>942</spage><pages>942-</pages><issn>1471-244X</issn><eissn>1471-244X</eissn><abstract>This study investigated socio-demographic, psychiatric, and psychological characteristics of patients with high versus low utilization of psychiatric inpatient services. Our objective was to better understand the utilization pattern and to contribute to improving psychiatric care. One-hundred and twenty inpatients of the University Psychiatric Clinics (UPK) Basel, Switzerland, participated in this cross-sectional study. All patients were interviewed using different clinical scales. As target variables we investigated the number of days of psychiatric inpatient treatment within a 30-month period. Despite including multiple relevant patient variables and using elaborate statistical models (classic univariate und multiple regression, LASSO regression, and non-linear random forest models), the selected variables explained only a small percentage of variance in the number of days of psychiatric inpatient treatment with cross-validated R values ranging from 0.16 to 0.22. The number of unmet needs of patients turned out to be a meaningful and hence potentially clinically relevant correlate of the number of days of psychiatric inpatient treatment in each of the applied statistical models. High utilization behavior remains a complex phenomenon, which can only partly be explained by psychiatric, psychological, or social/demographic characteristics. Self-reported unmet patient needs seems to be a promising variable which may be targeted by further research in order to potentially reduce unnecessary hospitalizations or develop better tailored psychiatric treatments.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>39716097</pmid><doi>10.1186/s12888-024-06388-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-244X
ispartof BMC psychiatry, 2024-12, Vol.24 (1), p.942
issn 1471-244X
1471-244X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11667975
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Aged
Cross-Sectional Studies
Female
Hospitalization - statistics & numerical data
Hospitals, Psychiatric - statistics & numerical data
Humans
Inpatients - psychology
Inpatients - statistics & numerical data
Machine Learning
Male
Mental Disorders - epidemiology
Mental Disorders - therapy
Mental Health Services - statistics & numerical data
Middle Aged
Patient Acceptance of Health Care - statistics & numerical data
Switzerland
title Exploring correlates of high psychiatric inpatient utilization in Switzerland: a descriptive and machine learning analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20correlates%20of%20high%20psychiatric%20inpatient%20utilization%20in%20Switzerland:%20a%20descriptive%20and%20machine%20learning%20analysis&rft.jtitle=BMC%20psychiatry&rft.au=Jaff%C3%A9,%20Mariela%20E&rft.date=2024-12-23&rft.volume=24&rft.issue=1&rft.spage=942&rft.pages=942-&rft.issn=1471-244X&rft.eissn=1471-244X&rft_id=info:doi/10.1186/s12888-024-06388-6&rft_dat=%3Cproquest_pubme%3E3148842102%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148842102&rft_id=info:pmid/39716097&rfr_iscdi=true