Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis
The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. i...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2024-12, Vol.52 (22), p.14061-14076 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14076 |
---|---|
container_issue | 22 |
container_start_page | 14061 |
container_title | Nucleic acids research |
container_volume | 52 |
creator | Ranjbarian, Farahnaz Rafie, Karim Shankar, Kasturika Krakovka, Sascha Svärd, Staffan G Carlson, Lars-Anders Hofer, Anders |
description | The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage. |
doi_str_mv | 10.1093/nar/gkae1073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11662666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133738395</sourcerecordid><originalsourceid>FETCH-LOGICAL-p235t-7511af73b7acc520e4c9087081439a0e5565cb4eafaeaa30e65e57e615054bae3</originalsourceid><addsrcrecordid>eNpVkM1PwzAMxSMEYmNw44xy5FKWNE2yntDEx0Ca4DLOldu6W1ialqZFDP55ijbQOPlJfv4924Scc3bFWSzGDprxcg3ImRYHZMiFCoMoVuHhnh6QE-9fGeMRl9ExGYhYMa1ZOCRfC2wbKLExn9CaytGqoDlWHxvI0VXeOKRr48AjLRFbT9sV9v0SXO5_rEBvn6a0wdqabDvvu9T3xBZptgJr0S2RGkdnBprcQC9b9G1PtMafkqMCrMezXR2Rl_u7xc1DMH-ePd5M50EdCtkGWnIOhRaphiyTIcMoi9lEswmPRAwMpVQySyOEAhBAMFQSpUbFJZNRCihG5HrLrbu0xDxD1y9ok7oxJTSbpAKT_O84s0qW1XvCuVKhUqonXO4ITfXW9QckpfEZWgsOq84ngguhxUTEsrde7If9pfy-XHwD7NaHWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133738395</pqid></control><display><type>article</type><title>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ranjbarian, Farahnaz ; Rafie, Karim ; Shankar, Kasturika ; Krakovka, Sascha ; Svärd, Staffan G ; Carlson, Lars-Anders ; Hofer, Anders</creator><creatorcontrib>Ranjbarian, Farahnaz ; Rafie, Karim ; Shankar, Kasturika ; Krakovka, Sascha ; Svärd, Staffan G ; Carlson, Lars-Anders ; Hofer, Anders</creatorcontrib><description>The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.</description><identifier>ISSN: 1362-4962</identifier><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae1073</identifier><identifier>PMID: 39607702</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cryoelectron Microscopy ; Crystallography, X-Ray ; Deoxyadenosines - chemistry ; Deoxyadenosines - metabolism ; DNA Replication ; Giardia lamblia - enzymology ; Giardia lamblia - genetics ; Models, Molecular ; Nucleic Acid Enzymes ; Phosphotransferases (Alcohol Group Acceptor) - chemistry ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Protein Multimerization ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2024-12, Vol.52 (22), p.14061-14076</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2890-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662666/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662666/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39607702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjbarian, Farahnaz</creatorcontrib><creatorcontrib>Rafie, Karim</creatorcontrib><creatorcontrib>Shankar, Kasturika</creatorcontrib><creatorcontrib>Krakovka, Sascha</creatorcontrib><creatorcontrib>Svärd, Staffan G</creatorcontrib><creatorcontrib>Carlson, Lars-Anders</creatorcontrib><creatorcontrib>Hofer, Anders</creatorcontrib><title>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.</description><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyadenosines - chemistry</subject><subject>Deoxyadenosines - metabolism</subject><subject>DNA Replication</subject><subject>Giardia lamblia - enzymology</subject><subject>Giardia lamblia - genetics</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Enzymes</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - chemistry</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Protein Multimerization</subject><subject>Substrate Specificity</subject><issn>1362-4962</issn><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1PwzAMxSMEYmNw44xy5FKWNE2yntDEx0Ca4DLOldu6W1ialqZFDP55ijbQOPlJfv4924Scc3bFWSzGDprxcg3ImRYHZMiFCoMoVuHhnh6QE-9fGeMRl9ExGYhYMa1ZOCRfC2wbKLExn9CaytGqoDlWHxvI0VXeOKRr48AjLRFbT9sV9v0SXO5_rEBvn6a0wdqabDvvu9T3xBZptgJr0S2RGkdnBprcQC9b9G1PtMafkqMCrMezXR2Rl_u7xc1DMH-ePd5M50EdCtkGWnIOhRaphiyTIcMoi9lEswmPRAwMpVQySyOEAhBAMFQSpUbFJZNRCihG5HrLrbu0xDxD1y9ok7oxJTSbpAKT_O84s0qW1XvCuVKhUqonXO4ITfXW9QckpfEZWgsOq84ngguhxUTEsrde7If9pfy-XHwD7NaHWQ</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Ranjbarian, Farahnaz</creator><creator>Rafie, Karim</creator><creator>Shankar, Kasturika</creator><creator>Krakovka, Sascha</creator><creator>Svärd, Staffan G</creator><creator>Carlson, Lars-Anders</creator><creator>Hofer, Anders</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2890-2957</orcidid></search><sort><creationdate>20241211</creationdate><title>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</title><author>Ranjbarian, Farahnaz ; Rafie, Karim ; Shankar, Kasturika ; Krakovka, Sascha ; Svärd, Staffan G ; Carlson, Lars-Anders ; Hofer, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p235t-7511af73b7acc520e4c9087081439a0e5565cb4eafaeaa30e65e57e615054bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyadenosines - chemistry</topic><topic>Deoxyadenosines - metabolism</topic><topic>DNA Replication</topic><topic>Giardia lamblia - enzymology</topic><topic>Giardia lamblia - genetics</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Enzymes</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - chemistry</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Protein Multimerization</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbarian, Farahnaz</creatorcontrib><creatorcontrib>Rafie, Karim</creatorcontrib><creatorcontrib>Shankar, Kasturika</creatorcontrib><creatorcontrib>Krakovka, Sascha</creatorcontrib><creatorcontrib>Svärd, Staffan G</creatorcontrib><creatorcontrib>Carlson, Lars-Anders</creatorcontrib><creatorcontrib>Hofer, Anders</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbarian, Farahnaz</au><au>Rafie, Karim</au><au>Shankar, Kasturika</au><au>Krakovka, Sascha</au><au>Svärd, Staffan G</au><au>Carlson, Lars-Anders</au><au>Hofer, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>52</volume><issue>22</issue><spage>14061</spage><epage>14076</epage><pages>14061-14076</pages><issn>1362-4962</issn><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39607702</pmid><doi>10.1093/nar/gkae1073</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2890-2957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1362-4962 |
ispartof | Nucleic acids research, 2024-12, Vol.52 (22), p.14061-14076 |
issn | 1362-4962 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11662666 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cryoelectron Microscopy Crystallography, X-Ray Deoxyadenosines - chemistry Deoxyadenosines - metabolism DNA Replication Giardia lamblia - enzymology Giardia lamblia - genetics Models, Molecular Nucleic Acid Enzymes Phosphotransferases (Alcohol Group Acceptor) - chemistry Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism Protein Multimerization Substrate Specificity |
title | Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetramerization%20of%20deoxyadenosine%20kinase%20meets%20the%20demands%20of%20a%20DNA%20replication%20substrate%20challenge%20in%20Giardia%20intestinalis&rft.jtitle=Nucleic%20acids%20research&rft.au=Ranjbarian,%20Farahnaz&rft.date=2024-12-11&rft.volume=52&rft.issue=22&rft.spage=14061&rft.epage=14076&rft.pages=14061-14076&rft.issn=1362-4962&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae1073&rft_dat=%3Cproquest_pubme%3E3133738395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133738395&rft_id=info:pmid/39607702&rfr_iscdi=true |