Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis

The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-12, Vol.52 (22), p.14061-14076
Hauptverfasser: Ranjbarian, Farahnaz, Rafie, Karim, Shankar, Kasturika, Krakovka, Sascha, Svärd, Staffan G, Carlson, Lars-Anders, Hofer, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14076
container_issue 22
container_start_page 14061
container_title Nucleic acids research
container_volume 52
creator Ranjbarian, Farahnaz
Rafie, Karim
Shankar, Kasturika
Krakovka, Sascha
Svärd, Staffan G
Carlson, Lars-Anders
Hofer, Anders
description The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.
doi_str_mv 10.1093/nar/gkae1073
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11662666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133738395</sourcerecordid><originalsourceid>FETCH-LOGICAL-p235t-7511af73b7acc520e4c9087081439a0e5565cb4eafaeaa30e65e57e615054bae3</originalsourceid><addsrcrecordid>eNpVkM1PwzAMxSMEYmNw44xy5FKWNE2yntDEx0Ca4DLOldu6W1ialqZFDP55ijbQOPlJfv4924Scc3bFWSzGDprxcg3ImRYHZMiFCoMoVuHhnh6QE-9fGeMRl9ExGYhYMa1ZOCRfC2wbKLExn9CaytGqoDlWHxvI0VXeOKRr48AjLRFbT9sV9v0SXO5_rEBvn6a0wdqabDvvu9T3xBZptgJr0S2RGkdnBprcQC9b9G1PtMafkqMCrMezXR2Rl_u7xc1DMH-ePd5M50EdCtkGWnIOhRaphiyTIcMoi9lEswmPRAwMpVQySyOEAhBAMFQSpUbFJZNRCihG5HrLrbu0xDxD1y9ok7oxJTSbpAKT_O84s0qW1XvCuVKhUqonXO4ITfXW9QckpfEZWgsOq84ngguhxUTEsrde7If9pfy-XHwD7NaHWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133738395</pqid></control><display><type>article</type><title>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ranjbarian, Farahnaz ; Rafie, Karim ; Shankar, Kasturika ; Krakovka, Sascha ; Svärd, Staffan G ; Carlson, Lars-Anders ; Hofer, Anders</creator><creatorcontrib>Ranjbarian, Farahnaz ; Rafie, Karim ; Shankar, Kasturika ; Krakovka, Sascha ; Svärd, Staffan G ; Carlson, Lars-Anders ; Hofer, Anders</creatorcontrib><description>The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.</description><identifier>ISSN: 1362-4962</identifier><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae1073</identifier><identifier>PMID: 39607702</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cryoelectron Microscopy ; Crystallography, X-Ray ; Deoxyadenosines - chemistry ; Deoxyadenosines - metabolism ; DNA Replication ; Giardia lamblia - enzymology ; Giardia lamblia - genetics ; Models, Molecular ; Nucleic Acid Enzymes ; Phosphotransferases (Alcohol Group Acceptor) - chemistry ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Protein Multimerization ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2024-12, Vol.52 (22), p.14061-14076</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2890-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662666/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662666/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39607702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjbarian, Farahnaz</creatorcontrib><creatorcontrib>Rafie, Karim</creatorcontrib><creatorcontrib>Shankar, Kasturika</creatorcontrib><creatorcontrib>Krakovka, Sascha</creatorcontrib><creatorcontrib>Svärd, Staffan G</creatorcontrib><creatorcontrib>Carlson, Lars-Anders</creatorcontrib><creatorcontrib>Hofer, Anders</creatorcontrib><title>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.</description><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyadenosines - chemistry</subject><subject>Deoxyadenosines - metabolism</subject><subject>DNA Replication</subject><subject>Giardia lamblia - enzymology</subject><subject>Giardia lamblia - genetics</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Enzymes</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - chemistry</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Protein Multimerization</subject><subject>Substrate Specificity</subject><issn>1362-4962</issn><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1PwzAMxSMEYmNw44xy5FKWNE2yntDEx0Ca4DLOldu6W1ialqZFDP55ijbQOPlJfv4924Scc3bFWSzGDprxcg3ImRYHZMiFCoMoVuHhnh6QE-9fGeMRl9ExGYhYMa1ZOCRfC2wbKLExn9CaytGqoDlWHxvI0VXeOKRr48AjLRFbT9sV9v0SXO5_rEBvn6a0wdqabDvvu9T3xBZptgJr0S2RGkdnBprcQC9b9G1PtMafkqMCrMezXR2Rl_u7xc1DMH-ePd5M50EdCtkGWnIOhRaphiyTIcMoi9lEswmPRAwMpVQySyOEAhBAMFQSpUbFJZNRCihG5HrLrbu0xDxD1y9ok7oxJTSbpAKT_O84s0qW1XvCuVKhUqonXO4ITfXW9QckpfEZWgsOq84ngguhxUTEsrde7If9pfy-XHwD7NaHWQ</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Ranjbarian, Farahnaz</creator><creator>Rafie, Karim</creator><creator>Shankar, Kasturika</creator><creator>Krakovka, Sascha</creator><creator>Svärd, Staffan G</creator><creator>Carlson, Lars-Anders</creator><creator>Hofer, Anders</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2890-2957</orcidid></search><sort><creationdate>20241211</creationdate><title>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</title><author>Ranjbarian, Farahnaz ; Rafie, Karim ; Shankar, Kasturika ; Krakovka, Sascha ; Svärd, Staffan G ; Carlson, Lars-Anders ; Hofer, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p235t-7511af73b7acc520e4c9087081439a0e5565cb4eafaeaa30e65e57e615054bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyadenosines - chemistry</topic><topic>Deoxyadenosines - metabolism</topic><topic>DNA Replication</topic><topic>Giardia lamblia - enzymology</topic><topic>Giardia lamblia - genetics</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Enzymes</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - chemistry</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Protein Multimerization</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbarian, Farahnaz</creatorcontrib><creatorcontrib>Rafie, Karim</creatorcontrib><creatorcontrib>Shankar, Kasturika</creatorcontrib><creatorcontrib>Krakovka, Sascha</creatorcontrib><creatorcontrib>Svärd, Staffan G</creatorcontrib><creatorcontrib>Carlson, Lars-Anders</creatorcontrib><creatorcontrib>Hofer, Anders</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbarian, Farahnaz</au><au>Rafie, Karim</au><au>Shankar, Kasturika</au><au>Krakovka, Sascha</au><au>Svärd, Staffan G</au><au>Carlson, Lars-Anders</au><au>Hofer, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>52</volume><issue>22</issue><spage>14061</spage><epage>14076</epage><pages>14061-14076</pages><issn>1362-4962</issn><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The protozoan parasite Giardia intestinalis is one of only a few organisms lacking de novo synthesis of DNA building blocks (deoxyribonucleotides). Instead, the parasite relies exclusively on salvaging deoxyadenosine and other deoxyribonucleosides from its host environment. Here, we report that G. intestinalis has a deoxyribonucleoside kinase with a 1000-fold higher catalytic efficiency (kcat/KM) for deoxyadenosine than the corresponding mammalian kinases and can thereby provide sufficient deoxyadenosine triphosphate levels for DNA synthesis despite the lack of de novo synthesis. Several deoxyadenosine analogs were also potent substrates and showed comparable EC50 values on cultured G. intestinalis cells as metronidazole, the current first-line treatment, with the additional advantage of being effective against metronidazole-resistant parasites. Structural analysis using cryo-EM and X-ray crystallography showed that the enzyme is unique within its family of deoxyribonucleoside kinases by forming a tetramer stabilized by extended N- and C-termini in a novel dimer-dimer interaction. Removal of the two termini resulted in lost ability to form tetramers and a markedly reduced affinity for the deoxyribonucleoside substrate. The development of highly efficient deoxyribonucleoside kinases via oligomerization may represent a critical evolutionary adaptation in organisms that rely solely on deoxyribonucleoside salvage.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39607702</pmid><doi>10.1093/nar/gkae1073</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2890-2957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1362-4962
ispartof Nucleic acids research, 2024-12, Vol.52 (22), p.14061-14076
issn 1362-4962
0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11662666
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cryoelectron Microscopy
Crystallography, X-Ray
Deoxyadenosines - chemistry
Deoxyadenosines - metabolism
DNA Replication
Giardia lamblia - enzymology
Giardia lamblia - genetics
Models, Molecular
Nucleic Acid Enzymes
Phosphotransferases (Alcohol Group Acceptor) - chemistry
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Protein Multimerization
Substrate Specificity
title Tetramerization of deoxyadenosine kinase meets the demands of a DNA replication substrate challenge in Giardia intestinalis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetramerization%20of%20deoxyadenosine%20kinase%20meets%20the%20demands%20of%20a%20DNA%20replication%20substrate%20challenge%20in%20Giardia%20intestinalis&rft.jtitle=Nucleic%20acids%20research&rft.au=Ranjbarian,%20Farahnaz&rft.date=2024-12-11&rft.volume=52&rft.issue=22&rft.spage=14061&rft.epage=14076&rft.pages=14061-14076&rft.issn=1362-4962&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae1073&rft_dat=%3Cproquest_pubme%3E3133738395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133738395&rft_id=info:pmid/39607702&rfr_iscdi=true