Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees

Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2025-02, Vol.163 (1), p.1-14
Hauptverfasser: Oluborode, James, Chadzinikolau, Tamara, Formela-Luboińska, Magda, Ye, Zi-Piao, Robakowski, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 1
container_title Photosynthesis research
container_volume 163
creator Oluborode, James
Chadzinikolau, Tamara
Formela-Luboińska, Magda
Ye, Zi-Piao
Robakowski, Piotr
description Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba , Taxus baccata , and Picea abies . We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates ( ETR max ) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence ( NPQ ), indicating energy losses as heat. The chlorophyll a to chlorophyll b ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher ETR max and lower NPQ compared to older needles.
doi_str_mv 10.1007/s11120-024-01125-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11659335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147298794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9408ceb22957f5a74f0fbd083467e3e613bd67611408a0365001e29c08bfb6263</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEokPhBVggS2xYNHBtx3G8QlXFn1SJDawtx7nJuMrYwXZG6iPw1nhmSvlZIFa2fL977j3WqarnFF5TAPkmUUoZ1MCaGspN1OxBtaFC8lqAVA-rDdC2rTuhxFn1JKUbAOhayh9XZ1xJYFKxTfX9cjBLdnskyU3ejc4ab5GEkZgJa2L8QGY3bXMdcTYZB7I30ZnsgifOE484zKU1x9XmNeIFWbYhB7vFnSuPtxdHgcVNO_Q5HTpwj3GKiJ7YUMZhDGsiuTykp9Wj0cwJn92d59XX9---XH2srz9_-HR1eV1b3qlcqwY6iz1jSshRGNmMMPYDdLxpJXIs_vqhlS2lhTPAWwFAkSkLXT_2LWv5efX2pLus_Q4HWzaLZtZLdDsTb3UwTv9Z8W6rp7DXlLZCcS6Kwqs7hRi-rZiyLm4tzrPxWOxoTkXDCirgP9BGNp0AdkBf_oXehDX68hVHiqlOqqZQ7ETZGFKKON4vTkEfUqFPqdAlFfqYCs1K04vfLd-3_IxBAfgJSKXkJ4y_Zv9D9geaN8QS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147298794</pqid></control><display><type>article</type><title>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Oluborode, James ; Chadzinikolau, Tamara ; Formela-Luboińska, Magda ; Ye, Zi-Piao ; Robakowski, Piotr</creator><creatorcontrib>Oluborode, James ; Chadzinikolau, Tamara ; Formela-Luboińska, Magda ; Ye, Zi-Piao ; Robakowski, Piotr</creatorcontrib><description>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba , Taxus baccata , and Picea abies . We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates ( ETR max ) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence ( NPQ ), indicating energy losses as heat. The chlorophyll a to chlorophyll b ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher ETR max and lower NPQ compared to older needles.</description><identifier>ISSN: 0166-8595</identifier><identifier>ISSN: 1573-5079</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-024-01125-2</identifier><identifier>PMID: 39702792</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abies alba ; Adaptation, Physiological ; Adaptiveness ; Age composition ; Aging ; Air temperature ; Biochemistry ; Biomedical and Life Sciences ; Branches ; Chlorophyll ; Chlorophyll - metabolism ; Chlorophyll A - metabolism ; climate ; Conifers ; electron transfer ; Electron transport ; energy ; Fluorescence ; heat ; leaves ; Life Sciences ; Life span ; Light ; longevity ; Photochemistry ; Photoinhibition ; photons ; Photosynthesis ; Photosynthesis - physiology ; Photosynthetic pigments ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Picea - metabolism ; Picea - physiology ; Picea - radiation effects ; Picea abies ; Pigments, Biological - metabolism ; Pine needles ; Plant Genetics and Genomics ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant Leaves - radiation effects ; Plant Physiology ; Plant Sciences ; Resource utilization ; Shading ; Taxus baccata ; Tracheophyta - metabolism ; Tracheophyta - physiology ; Tracheophyta - radiation effects ; Trees ; Trees - metabolism ; Trees - physiology</subject><ispartof>Photosynthesis research, 2025-02, Vol.163 (1), p.1-14</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-9408ceb22957f5a74f0fbd083467e3e613bd67611408a0365001e29c08bfb6263</cites><orcidid>0000-0001-8283-8779 ; 0000-0002-7598-1822 ; 0000-0002-8537-4639 ; 0000-0001-5564-7360 ; 0000-0003-4341-5399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-024-01125-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-024-01125-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39702792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oluborode, James</creatorcontrib><creatorcontrib>Chadzinikolau, Tamara</creatorcontrib><creatorcontrib>Formela-Luboińska, Magda</creatorcontrib><creatorcontrib>Ye, Zi-Piao</creatorcontrib><creatorcontrib>Robakowski, Piotr</creatorcontrib><title>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba , Taxus baccata , and Picea abies . We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates ( ETR max ) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence ( NPQ ), indicating energy losses as heat. The chlorophyll a to chlorophyll b ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher ETR max and lower NPQ compared to older needles.</description><subject>Abies alba</subject><subject>Adaptation, Physiological</subject><subject>Adaptiveness</subject><subject>Age composition</subject><subject>Aging</subject><subject>Air temperature</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Branches</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophyll A - metabolism</subject><subject>climate</subject><subject>Conifers</subject><subject>electron transfer</subject><subject>Electron transport</subject><subject>energy</subject><subject>Fluorescence</subject><subject>heat</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>Light</subject><subject>longevity</subject><subject>Photochemistry</subject><subject>Photoinhibition</subject><subject>photons</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Photosynthetic pigments</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Picea - metabolism</subject><subject>Picea - physiology</subject><subject>Picea - radiation effects</subject><subject>Picea abies</subject><subject>Pigments, Biological - metabolism</subject><subject>Pine needles</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Resource utilization</subject><subject>Shading</subject><subject>Taxus baccata</subject><subject>Tracheophyta - metabolism</subject><subject>Tracheophyta - physiology</subject><subject>Tracheophyta - radiation effects</subject><subject>Trees</subject><subject>Trees - metabolism</subject><subject>Trees - physiology</subject><issn>0166-8595</issn><issn>1573-5079</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhSMEokPhBVggS2xYNHBtx3G8QlXFn1SJDawtx7nJuMrYwXZG6iPw1nhmSvlZIFa2fL977j3WqarnFF5TAPkmUUoZ1MCaGspN1OxBtaFC8lqAVA-rDdC2rTuhxFn1JKUbAOhayh9XZ1xJYFKxTfX9cjBLdnskyU3ejc4ab5GEkZgJa2L8QGY3bXMdcTYZB7I30ZnsgifOE484zKU1x9XmNeIFWbYhB7vFnSuPtxdHgcVNO_Q5HTpwj3GKiJ7YUMZhDGsiuTykp9Wj0cwJn92d59XX9---XH2srz9_-HR1eV1b3qlcqwY6iz1jSshRGNmMMPYDdLxpJXIs_vqhlS2lhTPAWwFAkSkLXT_2LWv5efX2pLus_Q4HWzaLZtZLdDsTb3UwTv9Z8W6rp7DXlLZCcS6Kwqs7hRi-rZiyLm4tzrPxWOxoTkXDCirgP9BGNp0AdkBf_oXehDX68hVHiqlOqqZQ7ETZGFKKON4vTkEfUqFPqdAlFfqYCs1K04vfLd-3_IxBAfgJSKXkJ4y_Zv9D9geaN8QS</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Oluborode, James</creator><creator>Chadzinikolau, Tamara</creator><creator>Formela-Luboińska, Magda</creator><creator>Ye, Zi-Piao</creator><creator>Robakowski, Piotr</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>M7N</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8283-8779</orcidid><orcidid>https://orcid.org/0000-0002-7598-1822</orcidid><orcidid>https://orcid.org/0000-0002-8537-4639</orcidid><orcidid>https://orcid.org/0000-0001-5564-7360</orcidid><orcidid>https://orcid.org/0000-0003-4341-5399</orcidid></search><sort><creationdate>20250201</creationdate><title>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</title><author>Oluborode, James ; Chadzinikolau, Tamara ; Formela-Luboińska, Magda ; Ye, Zi-Piao ; Robakowski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9408ceb22957f5a74f0fbd083467e3e613bd67611408a0365001e29c08bfb6263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Abies alba</topic><topic>Adaptation, Physiological</topic><topic>Adaptiveness</topic><topic>Age composition</topic><topic>Aging</topic><topic>Air temperature</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Branches</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophyll A - metabolism</topic><topic>climate</topic><topic>Conifers</topic><topic>electron transfer</topic><topic>Electron transport</topic><topic>energy</topic><topic>Fluorescence</topic><topic>heat</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>Light</topic><topic>longevity</topic><topic>Photochemistry</topic><topic>Photoinhibition</topic><topic>photons</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Photosynthetic pigments</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Picea - metabolism</topic><topic>Picea - physiology</topic><topic>Picea - radiation effects</topic><topic>Picea abies</topic><topic>Pigments, Biological - metabolism</topic><topic>Pine needles</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Resource utilization</topic><topic>Shading</topic><topic>Taxus baccata</topic><topic>Tracheophyta - metabolism</topic><topic>Tracheophyta - physiology</topic><topic>Tracheophyta - radiation effects</topic><topic>Trees</topic><topic>Trees - metabolism</topic><topic>Trees - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oluborode, James</creatorcontrib><creatorcontrib>Chadzinikolau, Tamara</creatorcontrib><creatorcontrib>Formela-Luboińska, Magda</creatorcontrib><creatorcontrib>Ye, Zi-Piao</creatorcontrib><creatorcontrib>Robakowski, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oluborode, James</au><au>Chadzinikolau, Tamara</au><au>Formela-Luboińska, Magda</au><au>Ye, Zi-Piao</au><au>Robakowski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>163</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0166-8595</issn><issn>1573-5079</issn><eissn>1573-5079</eissn><abstract>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba , Taxus baccata , and Picea abies . We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates ( ETR max ) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence ( NPQ ), indicating energy losses as heat. The chlorophyll a to chlorophyll b ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher ETR max and lower NPQ compared to older needles.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39702792</pmid><doi>10.1007/s11120-024-01125-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8283-8779</orcidid><orcidid>https://orcid.org/0000-0002-7598-1822</orcidid><orcidid>https://orcid.org/0000-0002-8537-4639</orcidid><orcidid>https://orcid.org/0000-0001-5564-7360</orcidid><orcidid>https://orcid.org/0000-0003-4341-5399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2025-02, Vol.163 (1), p.1-14
issn 0166-8595
1573-5079
1573-5079
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11659335
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abies alba
Adaptation, Physiological
Adaptiveness
Age composition
Aging
Air temperature
Biochemistry
Biomedical and Life Sciences
Branches
Chlorophyll
Chlorophyll - metabolism
Chlorophyll A - metabolism
climate
Conifers
electron transfer
Electron transport
energy
Fluorescence
heat
leaves
Life Sciences
Life span
Light
longevity
Photochemistry
Photoinhibition
photons
Photosynthesis
Photosynthesis - physiology
Photosynthetic pigments
Photosystem II
Photosystem II Protein Complex - metabolism
Picea - metabolism
Picea - physiology
Picea - radiation effects
Picea abies
Pigments, Biological - metabolism
Pine needles
Plant Genetics and Genomics
Plant Leaves - metabolism
Plant Leaves - physiology
Plant Leaves - radiation effects
Plant Physiology
Plant Sciences
Resource utilization
Shading
Taxus baccata
Tracheophyta - metabolism
Tracheophyta - physiology
Tracheophyta - radiation effects
Trees
Trees - metabolism
Trees - physiology
title Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20significance%20of%20age-%20and%20light-related%20variation%20in%20needle%20structure,%20photochemistry,%20and%20pigments%20in%20evergreen%20coniferous%20trees&rft.jtitle=Photosynthesis%20research&rft.au=Oluborode,%20James&rft.date=2025-02-01&rft.volume=163&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-024-01125-2&rft_dat=%3Cproquest_pubme%3E3147298794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147298794&rft_id=info:pmid/39702792&rfr_iscdi=true