Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees
Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 2025-02, Vol.163 (1), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Photosynthesis research |
container_volume | 163 |
creator | Oluborode, James Chadzinikolau, Tamara Formela-Luboińska, Magda Ye, Zi-Piao Robakowski, Piotr |
description | Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of
Abies alba
,
Taxus baccata
, and
Picea abies
. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates (
ETR
max
) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence (
NPQ
), indicating energy losses as heat. The chlorophyll
a
to chlorophyll
b
ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher
ETR
max
and lower
NPQ
compared to older needles. |
doi_str_mv | 10.1007/s11120-024-01125-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11659335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147298794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9408ceb22957f5a74f0fbd083467e3e613bd67611408a0365001e29c08bfb6263</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEokPhBVggS2xYNHBtx3G8QlXFn1SJDawtx7nJuMrYwXZG6iPw1nhmSvlZIFa2fL977j3WqarnFF5TAPkmUUoZ1MCaGspN1OxBtaFC8lqAVA-rDdC2rTuhxFn1JKUbAOhayh9XZ1xJYFKxTfX9cjBLdnskyU3ejc4ab5GEkZgJa2L8QGY3bXMdcTYZB7I30ZnsgifOE484zKU1x9XmNeIFWbYhB7vFnSuPtxdHgcVNO_Q5HTpwj3GKiJ7YUMZhDGsiuTykp9Wj0cwJn92d59XX9---XH2srz9_-HR1eV1b3qlcqwY6iz1jSshRGNmMMPYDdLxpJXIs_vqhlS2lhTPAWwFAkSkLXT_2LWv5efX2pLus_Q4HWzaLZtZLdDsTb3UwTv9Z8W6rp7DXlLZCcS6Kwqs7hRi-rZiyLm4tzrPxWOxoTkXDCirgP9BGNp0AdkBf_oXehDX68hVHiqlOqqZQ7ETZGFKKON4vTkEfUqFPqdAlFfqYCs1K04vfLd-3_IxBAfgJSKXkJ4y_Zv9D9geaN8QS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147298794</pqid></control><display><type>article</type><title>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Oluborode, James ; Chadzinikolau, Tamara ; Formela-Luboińska, Magda ; Ye, Zi-Piao ; Robakowski, Piotr</creator><creatorcontrib>Oluborode, James ; Chadzinikolau, Tamara ; Formela-Luboińska, Magda ; Ye, Zi-Piao ; Robakowski, Piotr</creatorcontrib><description>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of
Abies alba
,
Taxus baccata
, and
Picea abies
. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates (
ETR
max
) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence (
NPQ
), indicating energy losses as heat. The chlorophyll
a
to chlorophyll
b
ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher
ETR
max
and lower
NPQ
compared to older needles.</description><identifier>ISSN: 0166-8595</identifier><identifier>ISSN: 1573-5079</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-024-01125-2</identifier><identifier>PMID: 39702792</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abies alba ; Adaptation, Physiological ; Adaptiveness ; Age composition ; Aging ; Air temperature ; Biochemistry ; Biomedical and Life Sciences ; Branches ; Chlorophyll ; Chlorophyll - metabolism ; Chlorophyll A - metabolism ; climate ; Conifers ; electron transfer ; Electron transport ; energy ; Fluorescence ; heat ; leaves ; Life Sciences ; Life span ; Light ; longevity ; Photochemistry ; Photoinhibition ; photons ; Photosynthesis ; Photosynthesis - physiology ; Photosynthetic pigments ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Picea - metabolism ; Picea - physiology ; Picea - radiation effects ; Picea abies ; Pigments, Biological - metabolism ; Pine needles ; Plant Genetics and Genomics ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant Leaves - radiation effects ; Plant Physiology ; Plant Sciences ; Resource utilization ; Shading ; Taxus baccata ; Tracheophyta - metabolism ; Tracheophyta - physiology ; Tracheophyta - radiation effects ; Trees ; Trees - metabolism ; Trees - physiology</subject><ispartof>Photosynthesis research, 2025-02, Vol.163 (1), p.1-14</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-9408ceb22957f5a74f0fbd083467e3e613bd67611408a0365001e29c08bfb6263</cites><orcidid>0000-0001-8283-8779 ; 0000-0002-7598-1822 ; 0000-0002-8537-4639 ; 0000-0001-5564-7360 ; 0000-0003-4341-5399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-024-01125-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-024-01125-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39702792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oluborode, James</creatorcontrib><creatorcontrib>Chadzinikolau, Tamara</creatorcontrib><creatorcontrib>Formela-Luboińska, Magda</creatorcontrib><creatorcontrib>Ye, Zi-Piao</creatorcontrib><creatorcontrib>Robakowski, Piotr</creatorcontrib><title>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of
Abies alba
,
Taxus baccata
, and
Picea abies
. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates (
ETR
max
) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence (
NPQ
), indicating energy losses as heat. The chlorophyll
a
to chlorophyll
b
ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher
ETR
max
and lower
NPQ
compared to older needles.</description><subject>Abies alba</subject><subject>Adaptation, Physiological</subject><subject>Adaptiveness</subject><subject>Age composition</subject><subject>Aging</subject><subject>Air temperature</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Branches</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophyll A - metabolism</subject><subject>climate</subject><subject>Conifers</subject><subject>electron transfer</subject><subject>Electron transport</subject><subject>energy</subject><subject>Fluorescence</subject><subject>heat</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>Light</subject><subject>longevity</subject><subject>Photochemistry</subject><subject>Photoinhibition</subject><subject>photons</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Photosynthetic pigments</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Picea - metabolism</subject><subject>Picea - physiology</subject><subject>Picea - radiation effects</subject><subject>Picea abies</subject><subject>Pigments, Biological - metabolism</subject><subject>Pine needles</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Resource utilization</subject><subject>Shading</subject><subject>Taxus baccata</subject><subject>Tracheophyta - metabolism</subject><subject>Tracheophyta - physiology</subject><subject>Tracheophyta - radiation effects</subject><subject>Trees</subject><subject>Trees - metabolism</subject><subject>Trees - physiology</subject><issn>0166-8595</issn><issn>1573-5079</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhSMEokPhBVggS2xYNHBtx3G8QlXFn1SJDawtx7nJuMrYwXZG6iPw1nhmSvlZIFa2fL977j3WqarnFF5TAPkmUUoZ1MCaGspN1OxBtaFC8lqAVA-rDdC2rTuhxFn1JKUbAOhayh9XZ1xJYFKxTfX9cjBLdnskyU3ejc4ab5GEkZgJa2L8QGY3bXMdcTYZB7I30ZnsgifOE484zKU1x9XmNeIFWbYhB7vFnSuPtxdHgcVNO_Q5HTpwj3GKiJ7YUMZhDGsiuTykp9Wj0cwJn92d59XX9---XH2srz9_-HR1eV1b3qlcqwY6iz1jSshRGNmMMPYDdLxpJXIs_vqhlS2lhTPAWwFAkSkLXT_2LWv5efX2pLus_Q4HWzaLZtZLdDsTb3UwTv9Z8W6rp7DXlLZCcS6Kwqs7hRi-rZiyLm4tzrPxWOxoTkXDCirgP9BGNp0AdkBf_oXehDX68hVHiqlOqqZQ7ETZGFKKON4vTkEfUqFPqdAlFfqYCs1K04vfLd-3_IxBAfgJSKXkJ4y_Zv9D9geaN8QS</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Oluborode, James</creator><creator>Chadzinikolau, Tamara</creator><creator>Formela-Luboińska, Magda</creator><creator>Ye, Zi-Piao</creator><creator>Robakowski, Piotr</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>M7N</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8283-8779</orcidid><orcidid>https://orcid.org/0000-0002-7598-1822</orcidid><orcidid>https://orcid.org/0000-0002-8537-4639</orcidid><orcidid>https://orcid.org/0000-0001-5564-7360</orcidid><orcidid>https://orcid.org/0000-0003-4341-5399</orcidid></search><sort><creationdate>20250201</creationdate><title>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</title><author>Oluborode, James ; Chadzinikolau, Tamara ; Formela-Luboińska, Magda ; Ye, Zi-Piao ; Robakowski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9408ceb22957f5a74f0fbd083467e3e613bd67611408a0365001e29c08bfb6263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Abies alba</topic><topic>Adaptation, Physiological</topic><topic>Adaptiveness</topic><topic>Age composition</topic><topic>Aging</topic><topic>Air temperature</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Branches</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophyll A - metabolism</topic><topic>climate</topic><topic>Conifers</topic><topic>electron transfer</topic><topic>Electron transport</topic><topic>energy</topic><topic>Fluorescence</topic><topic>heat</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>Light</topic><topic>longevity</topic><topic>Photochemistry</topic><topic>Photoinhibition</topic><topic>photons</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Photosynthetic pigments</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Picea - metabolism</topic><topic>Picea - physiology</topic><topic>Picea - radiation effects</topic><topic>Picea abies</topic><topic>Pigments, Biological - metabolism</topic><topic>Pine needles</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Resource utilization</topic><topic>Shading</topic><topic>Taxus baccata</topic><topic>Tracheophyta - metabolism</topic><topic>Tracheophyta - physiology</topic><topic>Tracheophyta - radiation effects</topic><topic>Trees</topic><topic>Trees - metabolism</topic><topic>Trees - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oluborode, James</creatorcontrib><creatorcontrib>Chadzinikolau, Tamara</creatorcontrib><creatorcontrib>Formela-Luboińska, Magda</creatorcontrib><creatorcontrib>Ye, Zi-Piao</creatorcontrib><creatorcontrib>Robakowski, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oluborode, James</au><au>Chadzinikolau, Tamara</au><au>Formela-Luboińska, Magda</au><au>Ye, Zi-Piao</au><au>Robakowski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>163</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0166-8595</issn><issn>1573-5079</issn><eissn>1573-5079</eissn><abstract>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of
Abies alba
,
Taxus baccata
, and
Picea abies
. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates (
ETR
max
) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence (
NPQ
), indicating energy losses as heat. The chlorophyll
a
to chlorophyll
b
ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher
ETR
max
and lower
NPQ
compared to older needles.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39702792</pmid><doi>10.1007/s11120-024-01125-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8283-8779</orcidid><orcidid>https://orcid.org/0000-0002-7598-1822</orcidid><orcidid>https://orcid.org/0000-0002-8537-4639</orcidid><orcidid>https://orcid.org/0000-0001-5564-7360</orcidid><orcidid>https://orcid.org/0000-0003-4341-5399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2025-02, Vol.163 (1), p.1-14 |
issn | 0166-8595 1573-5079 1573-5079 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11659335 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Abies alba Adaptation, Physiological Adaptiveness Age composition Aging Air temperature Biochemistry Biomedical and Life Sciences Branches Chlorophyll Chlorophyll - metabolism Chlorophyll A - metabolism climate Conifers electron transfer Electron transport energy Fluorescence heat leaves Life Sciences Life span Light longevity Photochemistry Photoinhibition photons Photosynthesis Photosynthesis - physiology Photosynthetic pigments Photosystem II Photosystem II Protein Complex - metabolism Picea - metabolism Picea - physiology Picea - radiation effects Picea abies Pigments, Biological - metabolism Pine needles Plant Genetics and Genomics Plant Leaves - metabolism Plant Leaves - physiology Plant Leaves - radiation effects Plant Physiology Plant Sciences Resource utilization Shading Taxus baccata Tracheophyta - metabolism Tracheophyta - physiology Tracheophyta - radiation effects Trees Trees - metabolism Trees - physiology |
title | Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20significance%20of%20age-%20and%20light-related%20variation%20in%20needle%20structure,%20photochemistry,%20and%20pigments%20in%20evergreen%20coniferous%20trees&rft.jtitle=Photosynthesis%20research&rft.au=Oluborode,%20James&rft.date=2025-02-01&rft.volume=163&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-024-01125-2&rft_dat=%3Cproquest_pubme%3E3147298794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147298794&rft_id=info:pmid/39702792&rfr_iscdi=true |