spread.gl: visualizing pathogen dispersal in a high-performance browser application

Bayesian phylogeographic analyses are pivotal in reconstructing the spatio-temporal dispersal histories of pathogens. However, interpreting the complex outcomes of phylogeographic reconstructions requires sophisticated visualization tools. To meet this challenge, we developed spread.gl, an open-sour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-11, Vol.40 (12)
Hauptverfasser: Li, Yimin, Bollen, Nena, Hong, Samuel L, Brusselmans, Marius, Gambaro, Fabiana, Klaps, Joon, Suchard, Marc A, Rambaut, Andrew, Lemey, Philippe, Dellicour, Simon, Baele, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Li, Yimin
Bollen, Nena
Hong, Samuel L
Brusselmans, Marius
Gambaro, Fabiana
Klaps, Joon
Suchard, Marc A
Rambaut, Andrew
Lemey, Philippe
Dellicour, Simon
Baele, Guy
description Bayesian phylogeographic analyses are pivotal in reconstructing the spatio-temporal dispersal histories of pathogens. However, interpreting the complex outcomes of phylogeographic reconstructions requires sophisticated visualization tools. To meet this challenge, we developed spread.gl, an open-source, feature-rich browser application offering a smooth and intuitive visualization tool for both discrete and continuous phylogeographic inferences, including the animation of pathogen geographic dispersal through time. Spread.gl can render and combine the visualization of multiple layers that contain information extracted from the input phylogeny and diverse environmental data layers, enabling researchers to explore which environmental factors may have impacted pathogen dispersal patterns before conducting formal testing. We showcase the visualization features of spread.gl with representative examples, including the smooth animation of a phylogeographic reconstruction based on >17 000 SARS-CoV-2 genomic sequences. Source code, installation instructions, example input data, and outputs of spread.gl are accessible at https://github.com/GuyBaele/SpreadGL.
doi_str_mv 10.1093/bioinformatics/btae721
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11652268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140926981</sourcerecordid><originalsourceid>FETCH-LOGICAL-p197t-357a3e8c515296506b37bccbe4f6039db19ad7f553c31f555c37ccedd70807163</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEYjD4C1OOXLrFzZK0XBCa-JImcQDOVZqmbVCXhKQdgl9PBQON02vZ1vNYRmgGZA4kp4vSOGNrFzayNyouyl5qkcIBOgHKRbLMAA736gk6jfGVEMII48doQnOecgpwgp6iD1pW86a7xFsTB9mZT2Mb7GXfukZbXJnodYiyw8ZiiVvTtMnY-FZbpXEZ3HvUAUvvO6PGa5w9Q0e17KI-3-UUvdzePK_uk_Xj3cPqep14yEWfUCYk1ZliwNKcM8JLKkqlSr2sOaF5VUIuK1EzRhWFMZiiQildVYJkRACnU3T1w_VDudGV0rYPsit8MBsZPgonTfF_Yk1bNG5bAHCWpjwbCRc7QnBvg459sTFR6a6TVrshFhSWJE95nsG4OtuX_Vl-X0m_ADWyfMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140926981</pqid></control><display><type>article</type><title>spread.gl: visualizing pathogen dispersal in a high-performance browser application</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Yimin ; Bollen, Nena ; Hong, Samuel L ; Brusselmans, Marius ; Gambaro, Fabiana ; Klaps, Joon ; Suchard, Marc A ; Rambaut, Andrew ; Lemey, Philippe ; Dellicour, Simon ; Baele, Guy</creator><creatorcontrib>Li, Yimin ; Bollen, Nena ; Hong, Samuel L ; Brusselmans, Marius ; Gambaro, Fabiana ; Klaps, Joon ; Suchard, Marc A ; Rambaut, Andrew ; Lemey, Philippe ; Dellicour, Simon ; Baele, Guy</creatorcontrib><description>Bayesian phylogeographic analyses are pivotal in reconstructing the spatio-temporal dispersal histories of pathogens. However, interpreting the complex outcomes of phylogeographic reconstructions requires sophisticated visualization tools. To meet this challenge, we developed spread.gl, an open-source, feature-rich browser application offering a smooth and intuitive visualization tool for both discrete and continuous phylogeographic inferences, including the animation of pathogen geographic dispersal through time. Spread.gl can render and combine the visualization of multiple layers that contain information extracted from the input phylogeny and diverse environmental data layers, enabling researchers to explore which environmental factors may have impacted pathogen dispersal patterns before conducting formal testing. We showcase the visualization features of spread.gl with representative examples, including the smooth animation of a phylogeographic reconstruction based on &gt;17 000 SARS-CoV-2 genomic sequences. Source code, installation instructions, example input data, and outputs of spread.gl are accessible at https://github.com/GuyBaele/SpreadGL.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae721</identifier><identifier>PMID: 39626311</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; COVID-19 - virology ; Humans ; Original Paper ; Phylogeny ; Phylogeography ; SARS-CoV-2 - genetics ; Software ; Web Browser</subject><ispartof>Bioinformatics (Oxford, England), 2024-11, Vol.40 (12)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7760-2112 ; 0009-0007-9939-8192 ; 0000-0003-2826-5353 ; 0000-0001-9558-1052 ; 0000-0002-1915-7732 ; 0000-0003-4337-3707 ; 0000-0001-9818-479X ; 0009-0000-2134-1515 ; 0000-0002-2507-0430 ; 0000-0001-6354-4943 ; 0000-0002-0532-0658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652268/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652268/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39626311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yimin</creatorcontrib><creatorcontrib>Bollen, Nena</creatorcontrib><creatorcontrib>Hong, Samuel L</creatorcontrib><creatorcontrib>Brusselmans, Marius</creatorcontrib><creatorcontrib>Gambaro, Fabiana</creatorcontrib><creatorcontrib>Klaps, Joon</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Rambaut, Andrew</creatorcontrib><creatorcontrib>Lemey, Philippe</creatorcontrib><creatorcontrib>Dellicour, Simon</creatorcontrib><creatorcontrib>Baele, Guy</creatorcontrib><title>spread.gl: visualizing pathogen dispersal in a high-performance browser application</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Bayesian phylogeographic analyses are pivotal in reconstructing the spatio-temporal dispersal histories of pathogens. However, interpreting the complex outcomes of phylogeographic reconstructions requires sophisticated visualization tools. To meet this challenge, we developed spread.gl, an open-source, feature-rich browser application offering a smooth and intuitive visualization tool for both discrete and continuous phylogeographic inferences, including the animation of pathogen geographic dispersal through time. Spread.gl can render and combine the visualization of multiple layers that contain information extracted from the input phylogeny and diverse environmental data layers, enabling researchers to explore which environmental factors may have impacted pathogen dispersal patterns before conducting formal testing. We showcase the visualization features of spread.gl with representative examples, including the smooth animation of a phylogeographic reconstruction based on &gt;17 000 SARS-CoV-2 genomic sequences. Source code, installation instructions, example input data, and outputs of spread.gl are accessible at https://github.com/GuyBaele/SpreadGL.</description><subject>Bayes Theorem</subject><subject>COVID-19 - virology</subject><subject>Humans</subject><subject>Original Paper</subject><subject>Phylogeny</subject><subject>Phylogeography</subject><subject>SARS-CoV-2 - genetics</subject><subject>Software</subject><subject>Web Browser</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwzAMhiMEYjD4C1OOXLrFzZK0XBCa-JImcQDOVZqmbVCXhKQdgl9PBQON02vZ1vNYRmgGZA4kp4vSOGNrFzayNyouyl5qkcIBOgHKRbLMAA736gk6jfGVEMII48doQnOecgpwgp6iD1pW86a7xFsTB9mZT2Mb7GXfukZbXJnodYiyw8ZiiVvTtMnY-FZbpXEZ3HvUAUvvO6PGa5w9Q0e17KI-3-UUvdzePK_uk_Xj3cPqep14yEWfUCYk1ZliwNKcM8JLKkqlSr2sOaF5VUIuK1EzRhWFMZiiQildVYJkRACnU3T1w_VDudGV0rYPsit8MBsZPgonTfF_Yk1bNG5bAHCWpjwbCRc7QnBvg459sTFR6a6TVrshFhSWJE95nsG4OtuX_Vl-X0m_ADWyfMQ</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Li, Yimin</creator><creator>Bollen, Nena</creator><creator>Hong, Samuel L</creator><creator>Brusselmans, Marius</creator><creator>Gambaro, Fabiana</creator><creator>Klaps, Joon</creator><creator>Suchard, Marc A</creator><creator>Rambaut, Andrew</creator><creator>Lemey, Philippe</creator><creator>Dellicour, Simon</creator><creator>Baele, Guy</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7760-2112</orcidid><orcidid>https://orcid.org/0009-0007-9939-8192</orcidid><orcidid>https://orcid.org/0000-0003-2826-5353</orcidid><orcidid>https://orcid.org/0000-0001-9558-1052</orcidid><orcidid>https://orcid.org/0000-0002-1915-7732</orcidid><orcidid>https://orcid.org/0000-0003-4337-3707</orcidid><orcidid>https://orcid.org/0000-0001-9818-479X</orcidid><orcidid>https://orcid.org/0009-0000-2134-1515</orcidid><orcidid>https://orcid.org/0000-0002-2507-0430</orcidid><orcidid>https://orcid.org/0000-0001-6354-4943</orcidid><orcidid>https://orcid.org/0000-0002-0532-0658</orcidid></search><sort><creationdate>20241128</creationdate><title>spread.gl: visualizing pathogen dispersal in a high-performance browser application</title><author>Li, Yimin ; Bollen, Nena ; Hong, Samuel L ; Brusselmans, Marius ; Gambaro, Fabiana ; Klaps, Joon ; Suchard, Marc A ; Rambaut, Andrew ; Lemey, Philippe ; Dellicour, Simon ; Baele, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p197t-357a3e8c515296506b37bccbe4f6039db19ad7f553c31f555c37ccedd70807163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>COVID-19 - virology</topic><topic>Humans</topic><topic>Original Paper</topic><topic>Phylogeny</topic><topic>Phylogeography</topic><topic>SARS-CoV-2 - genetics</topic><topic>Software</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yimin</creatorcontrib><creatorcontrib>Bollen, Nena</creatorcontrib><creatorcontrib>Hong, Samuel L</creatorcontrib><creatorcontrib>Brusselmans, Marius</creatorcontrib><creatorcontrib>Gambaro, Fabiana</creatorcontrib><creatorcontrib>Klaps, Joon</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Rambaut, Andrew</creatorcontrib><creatorcontrib>Lemey, Philippe</creatorcontrib><creatorcontrib>Dellicour, Simon</creatorcontrib><creatorcontrib>Baele, Guy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yimin</au><au>Bollen, Nena</au><au>Hong, Samuel L</au><au>Brusselmans, Marius</au><au>Gambaro, Fabiana</au><au>Klaps, Joon</au><au>Suchard, Marc A</au><au>Rambaut, Andrew</au><au>Lemey, Philippe</au><au>Dellicour, Simon</au><au>Baele, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>spread.gl: visualizing pathogen dispersal in a high-performance browser application</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-11-28</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Bayesian phylogeographic analyses are pivotal in reconstructing the spatio-temporal dispersal histories of pathogens. However, interpreting the complex outcomes of phylogeographic reconstructions requires sophisticated visualization tools. To meet this challenge, we developed spread.gl, an open-source, feature-rich browser application offering a smooth and intuitive visualization tool for both discrete and continuous phylogeographic inferences, including the animation of pathogen geographic dispersal through time. Spread.gl can render and combine the visualization of multiple layers that contain information extracted from the input phylogeny and diverse environmental data layers, enabling researchers to explore which environmental factors may have impacted pathogen dispersal patterns before conducting formal testing. We showcase the visualization features of spread.gl with representative examples, including the smooth animation of a phylogeographic reconstruction based on &gt;17 000 SARS-CoV-2 genomic sequences. Source code, installation instructions, example input data, and outputs of spread.gl are accessible at https://github.com/GuyBaele/SpreadGL.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39626311</pmid><doi>10.1093/bioinformatics/btae721</doi><orcidid>https://orcid.org/0000-0001-7760-2112</orcidid><orcidid>https://orcid.org/0009-0007-9939-8192</orcidid><orcidid>https://orcid.org/0000-0003-2826-5353</orcidid><orcidid>https://orcid.org/0000-0001-9558-1052</orcidid><orcidid>https://orcid.org/0000-0002-1915-7732</orcidid><orcidid>https://orcid.org/0000-0003-4337-3707</orcidid><orcidid>https://orcid.org/0000-0001-9818-479X</orcidid><orcidid>https://orcid.org/0009-0000-2134-1515</orcidid><orcidid>https://orcid.org/0000-0002-2507-0430</orcidid><orcidid>https://orcid.org/0000-0001-6354-4943</orcidid><orcidid>https://orcid.org/0000-0002-0532-0658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2024-11, Vol.40 (12)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11652268
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Bayes Theorem
COVID-19 - virology
Humans
Original Paper
Phylogeny
Phylogeography
SARS-CoV-2 - genetics
Software
Web Browser
title spread.gl: visualizing pathogen dispersal in a high-performance browser application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=spread.gl:%20visualizing%20pathogen%20dispersal%20in%20a%20high-performance%20browser%20application&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Li,%20Yimin&rft.date=2024-11-28&rft.volume=40&rft.issue=12&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae721&rft_dat=%3Cproquest_pubme%3E3140926981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140926981&rft_id=info:pmid/39626311&rfr_iscdi=true