Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder

In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological medicine 2024-11, Vol.54 (15), p.1-4334
Hauptverfasser: Han, Shaoqiang, Tian, Ya, Zheng, Ruiping, Wen, Baohong, Liu, Liang, Liu, Hao, Wei, Yarui, Chen, Huafu, Zhao, Zongya, Xia, Mingrui, Sun, Xiaoyi, Wang, Xiaoqin, Wei, Dongtao, Liu, Bangshan, Huang, Chu-Chung, Zheng, Yanting, Wu, Yankun, Chen, Taolin, Cheng, Yuqi, Xu, Xiufeng, Gong, Qiyong, Si, Tianmei, Qiu, Shijun, Lin, Ching-Po, Tang, Yanqing, Wang, Fei, Qiu, Jiang, Xie, Peng, Li, Lingjiang, He, Yong, Chen, Yuan, Zhang, Yong, Cheng, Jingliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4334
container_issue 15
container_start_page 1
container_title Psychological medicine
container_volume 54
creator Han, Shaoqiang
Tian, Ya
Zheng, Ruiping
Wen, Baohong
Liu, Liang
Liu, Hao
Wei, Yarui
Chen, Huafu
Zhao, Zongya
Xia, Mingrui
Sun, Xiaoyi
Wang, Xiaoqin
Wei, Dongtao
Liu, Bangshan
Huang, Chu-Chung
Zheng, Yanting
Wu, Yankun
Chen, Taolin
Cheng, Yuqi
Xu, Xiufeng
Gong, Qiyong
Si, Tianmei
Qiu, Shijun
Lin, Ching-Po
Tang, Yanqing
Wang, Fei
Qiu, Jiang
Xie, Peng
Li, Lingjiang
He, Yong
Chen, Yuan
Zhang, Yong
Cheng, Jingliang
description In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion. To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization. Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability. This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
doi_str_mv 10.1017/S0033291724002617
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11650188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151070842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2257-9cb462fbf597e7c9c1f6742c15b1ef7b7194d365d2a2d0edcfd7cfb744d33cb13</originalsourceid><addsrcrecordid>eNplUctu1DAUtRCITgsfwAZFYsMm4OtHnKwQqoAiVWJRWFuOH61HiT3Yyajz99zRlIrHytI9D99zDyGvgL4DCur9DaWcswEUE5SyDtQTsgHRDW0_qP4p2Rzh9oifkfNat5QCB8GekzM-yL7vFNuQ-5s7U7xrXAzBF5-WaKYmGLvkUps1OV-mQ0y3TUwu7qNbEa27nBaTfF5rk_xacIR8RJdDY8aUy2ymuERfUdTMZptL4_yu-Frj3uNHNRe0fUGeBTNV__LhvSA_Pn_6fnnVXn_78vXy43VrGZOqHewoOhbGIAfllR0shE4JZkGO4IMaFQzC8U46Zpij3tnglA2jEjjldgR-QT6cfHfrOCOOEXFjvStxNuWgs4n6byTFO32b9xqgkxT6Hh3ePjiU_HP1ddFzrNZP0-kGmgNnvZCKSaS--Ye6zWtJmA9ZEqiivWDIghPLllxr8eFxG6D6WKz-r1jUvP4zxqPid5P8F6NKomU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151070842</pqid></control><display><type>article</type><title>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Cambridge University Press Journals Complete</source><creator>Han, Shaoqiang ; Tian, Ya ; Zheng, Ruiping ; Wen, Baohong ; Liu, Liang ; Liu, Hao ; Wei, Yarui ; Chen, Huafu ; Zhao, Zongya ; Xia, Mingrui ; Sun, Xiaoyi ; Wang, Xiaoqin ; Wei, Dongtao ; Liu, Bangshan ; Huang, Chu-Chung ; Zheng, Yanting ; Wu, Yankun ; Chen, Taolin ; Cheng, Yuqi ; Xu, Xiufeng ; Gong, Qiyong ; Si, Tianmei ; Qiu, Shijun ; Lin, Ching-Po ; Tang, Yanqing ; Wang, Fei ; Qiu, Jiang ; Xie, Peng ; Li, Lingjiang ; He, Yong ; Chen, Yuan ; Zhang, Yong ; Cheng, Jingliang</creator><creatorcontrib>Han, Shaoqiang ; Tian, Ya ; Zheng, Ruiping ; Wen, Baohong ; Liu, Liang ; Liu, Hao ; Wei, Yarui ; Chen, Huafu ; Zhao, Zongya ; Xia, Mingrui ; Sun, Xiaoyi ; Wang, Xiaoqin ; Wei, Dongtao ; Liu, Bangshan ; Huang, Chu-Chung ; Zheng, Yanting ; Wu, Yankun ; Chen, Taolin ; Cheng, Yuqi ; Xu, Xiufeng ; Gong, Qiyong ; Si, Tianmei ; Qiu, Shijun ; Lin, Ching-Po ; Tang, Yanqing ; Wang, Fei ; Qiu, Jiang ; Xie, Peng ; Li, Lingjiang ; He, Yong ; Chen, Yuan ; Zhang, Yong ; Cheng, Jingliang ; DIDA-MDD Working Group</creatorcontrib><description>In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion. To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization. Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability. This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.</description><identifier>ISSN: 0033-2917</identifier><identifier>ISSN: 1469-8978</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291724002617</identifier><identifier>PMID: 39588672</identifier><language>eng</language><publisher>England: Cambridge University Press</publisher><subject>Brain research ; Consortia ; Datasets ; Depressive personality disorders ; Drugs ; Females ; Generalizability ; Genes ; Inflammation ; Magnetic resonance imaging ; Medical imaging ; Mental depression ; Mental disorders ; Morphology ; Neuroimaging ; Neurotransmitter receptors ; Original ; Psychiatrists ; Robustness ; Schizophrenia ; Subtypes ; Transcription factors</subject><ispartof>Psychological medicine, 2024-11, Vol.54 (15), p.1-4334</ispartof><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2257-9cb462fbf597e7c9c1f6742c15b1ef7b7194d365d2a2d0edcfd7cfb744d33cb13</cites><orcidid>0000-0001-7331-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,12826,27903,27904,30978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39588672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Shaoqiang</creatorcontrib><creatorcontrib>Tian, Ya</creatorcontrib><creatorcontrib>Zheng, Ruiping</creatorcontrib><creatorcontrib>Wen, Baohong</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wei, Yarui</creatorcontrib><creatorcontrib>Chen, Huafu</creatorcontrib><creatorcontrib>Zhao, Zongya</creatorcontrib><creatorcontrib>Xia, Mingrui</creatorcontrib><creatorcontrib>Sun, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Wei, Dongtao</creatorcontrib><creatorcontrib>Liu, Bangshan</creatorcontrib><creatorcontrib>Huang, Chu-Chung</creatorcontrib><creatorcontrib>Zheng, Yanting</creatorcontrib><creatorcontrib>Wu, Yankun</creatorcontrib><creatorcontrib>Chen, Taolin</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Xu, Xiufeng</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Si, Tianmei</creatorcontrib><creatorcontrib>Qiu, Shijun</creatorcontrib><creatorcontrib>Lin, Ching-Po</creatorcontrib><creatorcontrib>Tang, Yanqing</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qiu, Jiang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Li, Lingjiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Cheng, Jingliang</creatorcontrib><creatorcontrib>DIDA-MDD Working Group</creatorcontrib><title>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</title><title>Psychological medicine</title><addtitle>Psychol Med</addtitle><description>In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion. To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization. Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability. This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.</description><subject>Brain research</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Depressive personality disorders</subject><subject>Drugs</subject><subject>Females</subject><subject>Generalizability</subject><subject>Genes</subject><subject>Inflammation</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neurotransmitter receptors</subject><subject>Original</subject><subject>Psychiatrists</subject><subject>Robustness</subject><subject>Schizophrenia</subject><subject>Subtypes</subject><subject>Transcription factors</subject><issn>0033-2917</issn><issn>1469-8978</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUctu1DAUtRCITgsfwAZFYsMm4OtHnKwQqoAiVWJRWFuOH61HiT3Yyajz99zRlIrHytI9D99zDyGvgL4DCur9DaWcswEUE5SyDtQTsgHRDW0_qP4p2Rzh9oifkfNat5QCB8GekzM-yL7vFNuQ-5s7U7xrXAzBF5-WaKYmGLvkUps1OV-mQ0y3TUwu7qNbEa27nBaTfF5rk_xacIR8RJdDY8aUy2ymuERfUdTMZptL4_yu-Frj3uNHNRe0fUGeBTNV__LhvSA_Pn_6fnnVXn_78vXy43VrGZOqHewoOhbGIAfllR0shE4JZkGO4IMaFQzC8U46Zpij3tnglA2jEjjldgR-QT6cfHfrOCOOEXFjvStxNuWgs4n6byTFO32b9xqgkxT6Hh3ePjiU_HP1ddFzrNZP0-kGmgNnvZCKSaS--Ye6zWtJmA9ZEqiivWDIghPLllxr8eFxG6D6WKz-r1jUvP4zxqPid5P8F6NKomU</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Han, Shaoqiang</creator><creator>Tian, Ya</creator><creator>Zheng, Ruiping</creator><creator>Wen, Baohong</creator><creator>Liu, Liang</creator><creator>Liu, Hao</creator><creator>Wei, Yarui</creator><creator>Chen, Huafu</creator><creator>Zhao, Zongya</creator><creator>Xia, Mingrui</creator><creator>Sun, Xiaoyi</creator><creator>Wang, Xiaoqin</creator><creator>Wei, Dongtao</creator><creator>Liu, Bangshan</creator><creator>Huang, Chu-Chung</creator><creator>Zheng, Yanting</creator><creator>Wu, Yankun</creator><creator>Chen, Taolin</creator><creator>Cheng, Yuqi</creator><creator>Xu, Xiufeng</creator><creator>Gong, Qiyong</creator><creator>Si, Tianmei</creator><creator>Qiu, Shijun</creator><creator>Lin, Ching-Po</creator><creator>Tang, Yanqing</creator><creator>Wang, Fei</creator><creator>Qiu, Jiang</creator><creator>Xie, Peng</creator><creator>Li, Lingjiang</creator><creator>He, Yong</creator><creator>Chen, Yuan</creator><creator>Zhang, Yong</creator><creator>Cheng, Jingliang</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7331-0315</orcidid></search><sort><creationdate>20241101</creationdate><title>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</title><author>Han, Shaoqiang ; Tian, Ya ; Zheng, Ruiping ; Wen, Baohong ; Liu, Liang ; Liu, Hao ; Wei, Yarui ; Chen, Huafu ; Zhao, Zongya ; Xia, Mingrui ; Sun, Xiaoyi ; Wang, Xiaoqin ; Wei, Dongtao ; Liu, Bangshan ; Huang, Chu-Chung ; Zheng, Yanting ; Wu, Yankun ; Chen, Taolin ; Cheng, Yuqi ; Xu, Xiufeng ; Gong, Qiyong ; Si, Tianmei ; Qiu, Shijun ; Lin, Ching-Po ; Tang, Yanqing ; Wang, Fei ; Qiu, Jiang ; Xie, Peng ; Li, Lingjiang ; He, Yong ; Chen, Yuan ; Zhang, Yong ; Cheng, Jingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2257-9cb462fbf597e7c9c1f6742c15b1ef7b7194d365d2a2d0edcfd7cfb744d33cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain research</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Depressive personality disorders</topic><topic>Drugs</topic><topic>Females</topic><topic>Generalizability</topic><topic>Genes</topic><topic>Inflammation</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neurotransmitter receptors</topic><topic>Original</topic><topic>Psychiatrists</topic><topic>Robustness</topic><topic>Schizophrenia</topic><topic>Subtypes</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Shaoqiang</creatorcontrib><creatorcontrib>Tian, Ya</creatorcontrib><creatorcontrib>Zheng, Ruiping</creatorcontrib><creatorcontrib>Wen, Baohong</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wei, Yarui</creatorcontrib><creatorcontrib>Chen, Huafu</creatorcontrib><creatorcontrib>Zhao, Zongya</creatorcontrib><creatorcontrib>Xia, Mingrui</creatorcontrib><creatorcontrib>Sun, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Wei, Dongtao</creatorcontrib><creatorcontrib>Liu, Bangshan</creatorcontrib><creatorcontrib>Huang, Chu-Chung</creatorcontrib><creatorcontrib>Zheng, Yanting</creatorcontrib><creatorcontrib>Wu, Yankun</creatorcontrib><creatorcontrib>Chen, Taolin</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Xu, Xiufeng</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Si, Tianmei</creatorcontrib><creatorcontrib>Qiu, Shijun</creatorcontrib><creatorcontrib>Lin, Ching-Po</creatorcontrib><creatorcontrib>Tang, Yanqing</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qiu, Jiang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Li, Lingjiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Cheng, Jingliang</creatorcontrib><creatorcontrib>DIDA-MDD Working Group</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Shaoqiang</au><au>Tian, Ya</au><au>Zheng, Ruiping</au><au>Wen, Baohong</au><au>Liu, Liang</au><au>Liu, Hao</au><au>Wei, Yarui</au><au>Chen, Huafu</au><au>Zhao, Zongya</au><au>Xia, Mingrui</au><au>Sun, Xiaoyi</au><au>Wang, Xiaoqin</au><au>Wei, Dongtao</au><au>Liu, Bangshan</au><au>Huang, Chu-Chung</au><au>Zheng, Yanting</au><au>Wu, Yankun</au><au>Chen, Taolin</au><au>Cheng, Yuqi</au><au>Xu, Xiufeng</au><au>Gong, Qiyong</au><au>Si, Tianmei</au><au>Qiu, Shijun</au><au>Lin, Ching-Po</au><au>Tang, Yanqing</au><au>Wang, Fei</au><au>Qiu, Jiang</au><au>Xie, Peng</au><au>Li, Lingjiang</au><au>He, Yong</au><au>Chen, Yuan</au><au>Zhang, Yong</au><au>Cheng, Jingliang</au><aucorp>DIDA-MDD Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol Med</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>54</volume><issue>15</issue><spage>1</spage><epage>4334</epage><pages>1-4334</pages><issn>0033-2917</issn><issn>1469-8978</issn><eissn>1469-8978</eissn><abstract>In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion. To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization. Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability. This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.</abstract><cop>England</cop><pub>Cambridge University Press</pub><pmid>39588672</pmid><doi>10.1017/S0033291724002617</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7331-0315</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-2917
ispartof Psychological medicine, 2024-11, Vol.54 (15), p.1-4334
issn 0033-2917
1469-8978
1469-8978
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11650188
source Applied Social Sciences Index & Abstracts (ASSIA); Cambridge University Press Journals Complete
subjects Brain research
Consortia
Datasets
Depressive personality disorders
Drugs
Females
Generalizability
Genes
Inflammation
Magnetic resonance imaging
Medical imaging
Mental depression
Mental disorders
Morphology
Neuroimaging
Neurotransmitter receptors
Original
Psychiatrists
Robustness
Schizophrenia
Subtypes
Transcription factors
title Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shared%20differential%20factors%20underlying%20individual%20spontaneous%20neural%20activity%20abnormalities%20in%20major%20depressive%20disorder&rft.jtitle=Psychological%20medicine&rft.au=Han,%20Shaoqiang&rft.aucorp=DIDA-MDD%20Working%20Group&rft.date=2024-11-01&rft.volume=54&rft.issue=15&rft.spage=1&rft.epage=4334&rft.pages=1-4334&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291724002617&rft_dat=%3Cproquest_pubme%3E3151070842%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151070842&rft_id=info:pmid/39588672&rfr_iscdi=true