Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients...
Gespeichert in:
Veröffentlicht in: | Psychological medicine 2024-11, Vol.54 (15), p.1-4334 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4334 |
---|---|
container_issue | 15 |
container_start_page | 1 |
container_title | Psychological medicine |
container_volume | 54 |
creator | Han, Shaoqiang Tian, Ya Zheng, Ruiping Wen, Baohong Liu, Liang Liu, Hao Wei, Yarui Chen, Huafu Zhao, Zongya Xia, Mingrui Sun, Xiaoyi Wang, Xiaoqin Wei, Dongtao Liu, Bangshan Huang, Chu-Chung Zheng, Yanting Wu, Yankun Chen, Taolin Cheng, Yuqi Xu, Xiufeng Gong, Qiyong Si, Tianmei Qiu, Shijun Lin, Ching-Po Tang, Yanqing Wang, Fei Qiu, Jiang Xie, Peng Li, Lingjiang He, Yong Chen, Yuan Zhang, Yong Cheng, Jingliang |
description | In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD. |
doi_str_mv | 10.1017/S0033291724002617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11650188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151070842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2257-9cb462fbf597e7c9c1f6742c15b1ef7b7194d365d2a2d0edcfd7cfb744d33cb13</originalsourceid><addsrcrecordid>eNplUctu1DAUtRCITgsfwAZFYsMm4OtHnKwQqoAiVWJRWFuOH61HiT3Yyajz99zRlIrHytI9D99zDyGvgL4DCur9DaWcswEUE5SyDtQTsgHRDW0_qP4p2Rzh9oifkfNat5QCB8GekzM-yL7vFNuQ-5s7U7xrXAzBF5-WaKYmGLvkUps1OV-mQ0y3TUwu7qNbEa27nBaTfF5rk_xacIR8RJdDY8aUy2ymuERfUdTMZptL4_yu-Frj3uNHNRe0fUGeBTNV__LhvSA_Pn_6fnnVXn_78vXy43VrGZOqHewoOhbGIAfllR0shE4JZkGO4IMaFQzC8U46Zpij3tnglA2jEjjldgR-QT6cfHfrOCOOEXFjvStxNuWgs4n6byTFO32b9xqgkxT6Hh3ePjiU_HP1ddFzrNZP0-kGmgNnvZCKSaS--Ye6zWtJmA9ZEqiivWDIghPLllxr8eFxG6D6WKz-r1jUvP4zxqPid5P8F6NKomU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151070842</pqid></control><display><type>article</type><title>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Cambridge University Press Journals Complete</source><creator>Han, Shaoqiang ; Tian, Ya ; Zheng, Ruiping ; Wen, Baohong ; Liu, Liang ; Liu, Hao ; Wei, Yarui ; Chen, Huafu ; Zhao, Zongya ; Xia, Mingrui ; Sun, Xiaoyi ; Wang, Xiaoqin ; Wei, Dongtao ; Liu, Bangshan ; Huang, Chu-Chung ; Zheng, Yanting ; Wu, Yankun ; Chen, Taolin ; Cheng, Yuqi ; Xu, Xiufeng ; Gong, Qiyong ; Si, Tianmei ; Qiu, Shijun ; Lin, Ching-Po ; Tang, Yanqing ; Wang, Fei ; Qiu, Jiang ; Xie, Peng ; Li, Lingjiang ; He, Yong ; Chen, Yuan ; Zhang, Yong ; Cheng, Jingliang</creator><creatorcontrib>Han, Shaoqiang ; Tian, Ya ; Zheng, Ruiping ; Wen, Baohong ; Liu, Liang ; Liu, Hao ; Wei, Yarui ; Chen, Huafu ; Zhao, Zongya ; Xia, Mingrui ; Sun, Xiaoyi ; Wang, Xiaoqin ; Wei, Dongtao ; Liu, Bangshan ; Huang, Chu-Chung ; Zheng, Yanting ; Wu, Yankun ; Chen, Taolin ; Cheng, Yuqi ; Xu, Xiufeng ; Gong, Qiyong ; Si, Tianmei ; Qiu, Shijun ; Lin, Ching-Po ; Tang, Yanqing ; Wang, Fei ; Qiu, Jiang ; Xie, Peng ; Li, Lingjiang ; He, Yong ; Chen, Yuan ; Zhang, Yong ; Cheng, Jingliang ; DIDA-MDD Working Group</creatorcontrib><description>In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.</description><identifier>ISSN: 0033-2917</identifier><identifier>ISSN: 1469-8978</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291724002617</identifier><identifier>PMID: 39588672</identifier><language>eng</language><publisher>England: Cambridge University Press</publisher><subject>Brain research ; Consortia ; Datasets ; Depressive personality disorders ; Drugs ; Females ; Generalizability ; Genes ; Inflammation ; Magnetic resonance imaging ; Medical imaging ; Mental depression ; Mental disorders ; Morphology ; Neuroimaging ; Neurotransmitter receptors ; Original ; Psychiatrists ; Robustness ; Schizophrenia ; Subtypes ; Transcription factors</subject><ispartof>Psychological medicine, 2024-11, Vol.54 (15), p.1-4334</ispartof><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2257-9cb462fbf597e7c9c1f6742c15b1ef7b7194d365d2a2d0edcfd7cfb744d33cb13</cites><orcidid>0000-0001-7331-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,12826,27903,27904,30978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39588672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Shaoqiang</creatorcontrib><creatorcontrib>Tian, Ya</creatorcontrib><creatorcontrib>Zheng, Ruiping</creatorcontrib><creatorcontrib>Wen, Baohong</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wei, Yarui</creatorcontrib><creatorcontrib>Chen, Huafu</creatorcontrib><creatorcontrib>Zhao, Zongya</creatorcontrib><creatorcontrib>Xia, Mingrui</creatorcontrib><creatorcontrib>Sun, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Wei, Dongtao</creatorcontrib><creatorcontrib>Liu, Bangshan</creatorcontrib><creatorcontrib>Huang, Chu-Chung</creatorcontrib><creatorcontrib>Zheng, Yanting</creatorcontrib><creatorcontrib>Wu, Yankun</creatorcontrib><creatorcontrib>Chen, Taolin</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Xu, Xiufeng</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Si, Tianmei</creatorcontrib><creatorcontrib>Qiu, Shijun</creatorcontrib><creatorcontrib>Lin, Ching-Po</creatorcontrib><creatorcontrib>Tang, Yanqing</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qiu, Jiang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Li, Lingjiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Cheng, Jingliang</creatorcontrib><creatorcontrib>DIDA-MDD Working Group</creatorcontrib><title>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</title><title>Psychological medicine</title><addtitle>Psychol Med</addtitle><description>In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.</description><subject>Brain research</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Depressive personality disorders</subject><subject>Drugs</subject><subject>Females</subject><subject>Generalizability</subject><subject>Genes</subject><subject>Inflammation</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neurotransmitter receptors</subject><subject>Original</subject><subject>Psychiatrists</subject><subject>Robustness</subject><subject>Schizophrenia</subject><subject>Subtypes</subject><subject>Transcription factors</subject><issn>0033-2917</issn><issn>1469-8978</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUctu1DAUtRCITgsfwAZFYsMm4OtHnKwQqoAiVWJRWFuOH61HiT3Yyajz99zRlIrHytI9D99zDyGvgL4DCur9DaWcswEUE5SyDtQTsgHRDW0_qP4p2Rzh9oifkfNat5QCB8GekzM-yL7vFNuQ-5s7U7xrXAzBF5-WaKYmGLvkUps1OV-mQ0y3TUwu7qNbEa27nBaTfF5rk_xacIR8RJdDY8aUy2ymuERfUdTMZptL4_yu-Frj3uNHNRe0fUGeBTNV__LhvSA_Pn_6fnnVXn_78vXy43VrGZOqHewoOhbGIAfllR0shE4JZkGO4IMaFQzC8U46Zpij3tnglA2jEjjldgR-QT6cfHfrOCOOEXFjvStxNuWgs4n6byTFO32b9xqgkxT6Hh3ePjiU_HP1ddFzrNZP0-kGmgNnvZCKSaS--Ye6zWtJmA9ZEqiivWDIghPLllxr8eFxG6D6WKz-r1jUvP4zxqPid5P8F6NKomU</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Han, Shaoqiang</creator><creator>Tian, Ya</creator><creator>Zheng, Ruiping</creator><creator>Wen, Baohong</creator><creator>Liu, Liang</creator><creator>Liu, Hao</creator><creator>Wei, Yarui</creator><creator>Chen, Huafu</creator><creator>Zhao, Zongya</creator><creator>Xia, Mingrui</creator><creator>Sun, Xiaoyi</creator><creator>Wang, Xiaoqin</creator><creator>Wei, Dongtao</creator><creator>Liu, Bangshan</creator><creator>Huang, Chu-Chung</creator><creator>Zheng, Yanting</creator><creator>Wu, Yankun</creator><creator>Chen, Taolin</creator><creator>Cheng, Yuqi</creator><creator>Xu, Xiufeng</creator><creator>Gong, Qiyong</creator><creator>Si, Tianmei</creator><creator>Qiu, Shijun</creator><creator>Lin, Ching-Po</creator><creator>Tang, Yanqing</creator><creator>Wang, Fei</creator><creator>Qiu, Jiang</creator><creator>Xie, Peng</creator><creator>Li, Lingjiang</creator><creator>He, Yong</creator><creator>Chen, Yuan</creator><creator>Zhang, Yong</creator><creator>Cheng, Jingliang</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7331-0315</orcidid></search><sort><creationdate>20241101</creationdate><title>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</title><author>Han, Shaoqiang ; Tian, Ya ; Zheng, Ruiping ; Wen, Baohong ; Liu, Liang ; Liu, Hao ; Wei, Yarui ; Chen, Huafu ; Zhao, Zongya ; Xia, Mingrui ; Sun, Xiaoyi ; Wang, Xiaoqin ; Wei, Dongtao ; Liu, Bangshan ; Huang, Chu-Chung ; Zheng, Yanting ; Wu, Yankun ; Chen, Taolin ; Cheng, Yuqi ; Xu, Xiufeng ; Gong, Qiyong ; Si, Tianmei ; Qiu, Shijun ; Lin, Ching-Po ; Tang, Yanqing ; Wang, Fei ; Qiu, Jiang ; Xie, Peng ; Li, Lingjiang ; He, Yong ; Chen, Yuan ; Zhang, Yong ; Cheng, Jingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2257-9cb462fbf597e7c9c1f6742c15b1ef7b7194d365d2a2d0edcfd7cfb744d33cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain research</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Depressive personality disorders</topic><topic>Drugs</topic><topic>Females</topic><topic>Generalizability</topic><topic>Genes</topic><topic>Inflammation</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neurotransmitter receptors</topic><topic>Original</topic><topic>Psychiatrists</topic><topic>Robustness</topic><topic>Schizophrenia</topic><topic>Subtypes</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Shaoqiang</creatorcontrib><creatorcontrib>Tian, Ya</creatorcontrib><creatorcontrib>Zheng, Ruiping</creatorcontrib><creatorcontrib>Wen, Baohong</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Wei, Yarui</creatorcontrib><creatorcontrib>Chen, Huafu</creatorcontrib><creatorcontrib>Zhao, Zongya</creatorcontrib><creatorcontrib>Xia, Mingrui</creatorcontrib><creatorcontrib>Sun, Xiaoyi</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Wei, Dongtao</creatorcontrib><creatorcontrib>Liu, Bangshan</creatorcontrib><creatorcontrib>Huang, Chu-Chung</creatorcontrib><creatorcontrib>Zheng, Yanting</creatorcontrib><creatorcontrib>Wu, Yankun</creatorcontrib><creatorcontrib>Chen, Taolin</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Xu, Xiufeng</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Si, Tianmei</creatorcontrib><creatorcontrib>Qiu, Shijun</creatorcontrib><creatorcontrib>Lin, Ching-Po</creatorcontrib><creatorcontrib>Tang, Yanqing</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qiu, Jiang</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Li, Lingjiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Cheng, Jingliang</creatorcontrib><creatorcontrib>DIDA-MDD Working Group</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Shaoqiang</au><au>Tian, Ya</au><au>Zheng, Ruiping</au><au>Wen, Baohong</au><au>Liu, Liang</au><au>Liu, Hao</au><au>Wei, Yarui</au><au>Chen, Huafu</au><au>Zhao, Zongya</au><au>Xia, Mingrui</au><au>Sun, Xiaoyi</au><au>Wang, Xiaoqin</au><au>Wei, Dongtao</au><au>Liu, Bangshan</au><au>Huang, Chu-Chung</au><au>Zheng, Yanting</au><au>Wu, Yankun</au><au>Chen, Taolin</au><au>Cheng, Yuqi</au><au>Xu, Xiufeng</au><au>Gong, Qiyong</au><au>Si, Tianmei</au><au>Qiu, Shijun</au><au>Lin, Ching-Po</au><au>Tang, Yanqing</au><au>Wang, Fei</au><au>Qiu, Jiang</au><au>Xie, Peng</au><au>Li, Lingjiang</au><au>He, Yong</au><au>Chen, Yuan</au><au>Zhang, Yong</au><au>Cheng, Jingliang</au><aucorp>DIDA-MDD Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol Med</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>54</volume><issue>15</issue><spage>1</spage><epage>4334</epage><pages>1-4334</pages><issn>0033-2917</issn><issn>1469-8978</issn><eissn>1469-8978</eissn><abstract>In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.</abstract><cop>England</cop><pub>Cambridge University Press</pub><pmid>39588672</pmid><doi>10.1017/S0033291724002617</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7331-0315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-2917 |
ispartof | Psychological medicine, 2024-11, Vol.54 (15), p.1-4334 |
issn | 0033-2917 1469-8978 1469-8978 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11650188 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Cambridge University Press Journals Complete |
subjects | Brain research Consortia Datasets Depressive personality disorders Drugs Females Generalizability Genes Inflammation Magnetic resonance imaging Medical imaging Mental depression Mental disorders Morphology Neuroimaging Neurotransmitter receptors Original Psychiatrists Robustness Schizophrenia Subtypes Transcription factors |
title | Shared differential factors underlying individual spontaneous neural activity abnormalities in major depressive disorder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shared%20differential%20factors%20underlying%20individual%20spontaneous%20neural%20activity%20abnormalities%20in%20major%20depressive%20disorder&rft.jtitle=Psychological%20medicine&rft.au=Han,%20Shaoqiang&rft.aucorp=DIDA-MDD%20Working%20Group&rft.date=2024-11-01&rft.volume=54&rft.issue=15&rft.spage=1&rft.epage=4334&rft.pages=1-4334&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291724002617&rft_dat=%3Cproquest_pubme%3E3151070842%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151070842&rft_id=info:pmid/39588672&rfr_iscdi=true |