Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters
The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state model...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2024-10, Vol.43 (24), p.6740-6765 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6765 |
---|---|
container_issue | 24 |
container_start_page | 6740 |
container_title | The EMBO journal |
container_volume | 43 |
creator | Dmitrieva, Natalia Gholami, Samira Alleva, Claudia Carloni, Paolo Alfonso-Prieto, Mercedes Fahlke, Christoph |
description | The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the
d
-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton,
apo
DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.
Synopsis
The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity.
DgoT transports negatively charged galactonate in symport with two protons.
Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate.
The conserved R47 couples substrate binding to the conformational changes in the protein.
Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated.
Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed. |
doi_str_mv | 10.1038/s44318-024-00279-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11649914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121058178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-26176659d3dac8d72c5c9eef6c375e186cb26034789bca7ede945c0d6723cf993</originalsourceid><addsrcrecordid>eNp9kUlPwzAUhC0EoqXwBzggHzkQ8JJ4OSFUVqkSB8rZch0nTZXExU6Q-u9x6aJy4WJbmnmfR28AuMToFiMq7kKaUiwSRNIEIcJlsjoCQ5wylBDEs-OD9wCchbBACGWC41MwoDLNMoHoEEynXrdh6XwHG2vmuq1CA10BH0s3vYEazrTprK90DeeucbUr1-LHZIw5dL6MdgPj4VrY7TjWh3NwUug62IvtPQKfz0_T8WsyeX95Gz9MEkOJ6BLCMGcskznNtRE5JyYz0tqCGcoziwUzM8IQTbmQM6O5zW2MbVDOOKGmkJKOwP2Gu-xnjc2NbWOKWi191Wi_Uk5X6q_SVnNVum-FMUulxGkkXG8J3n31NnSqqYKxda1b6_qgKCY4Lg1zEa1kYzXeheBtsf8HI7XuQ236ULEP9duHWsWhq8OE-5FdAdFAN4YQpba0Xi1c79u4tf-wP5Fsl6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121058178</pqid></control><display><type>article</type><title>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dmitrieva, Natalia ; Gholami, Samira ; Alleva, Claudia ; Carloni, Paolo ; Alfonso-Prieto, Mercedes ; Fahlke, Christoph</creator><creatorcontrib>Dmitrieva, Natalia ; Gholami, Samira ; Alleva, Claudia ; Carloni, Paolo ; Alfonso-Prieto, Mercedes ; Fahlke, Christoph</creatorcontrib><description>The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the
d
-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton,
apo
DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.
Synopsis
The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity.
DgoT transports negatively charged galactonate in symport with two protons.
Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate.
The conserved R47 couples substrate binding to the conformational changes in the protein.
Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated.
Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.</description><identifier>ISSN: 1460-2075</identifier><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/s44318-024-00279-y</identifier><identifier>PMID: 39455803</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Transport ; Biomedical and Life Sciences ; EMBO40 ; Life Sciences ; Models, Molecular ; Molecular Dynamics Simulation ; Organic Anion Transporters - chemistry ; Organic Anion Transporters - genetics ; Organic Anion Transporters - metabolism ; Protein Conformation</subject><ispartof>The EMBO journal, 2024-10, Vol.43 (24), p.6740-6765</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-26176659d3dac8d72c5c9eef6c375e186cb26034789bca7ede945c0d6723cf993</cites><orcidid>0000-0003-4509-4517 ; 0000-0002-8133-0890 ; 0000-0002-9010-0149 ; 0000-0001-8602-9952 ; 0009-0000-1371-553X ; 0000-0001-8595-9250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s44318-024-00279-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s44318-024-00279-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39455803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmitrieva, Natalia</creatorcontrib><creatorcontrib>Gholami, Samira</creatorcontrib><creatorcontrib>Alleva, Claudia</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><creatorcontrib>Alfonso-Prieto, Mercedes</creatorcontrib><creatorcontrib>Fahlke, Christoph</creatorcontrib><title>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the
d
-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton,
apo
DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.
Synopsis
The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity.
DgoT transports negatively charged galactonate in symport with two protons.
Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate.
The conserved R47 couples substrate binding to the conformational changes in the protein.
Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated.
Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>EMBO40</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Organic Anion Transporters - chemistry</subject><subject>Organic Anion Transporters - genetics</subject><subject>Organic Anion Transporters - metabolism</subject><subject>Protein Conformation</subject><issn>1460-2075</issn><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAUhC0EoqXwBzggHzkQ8JJ4OSFUVqkSB8rZch0nTZXExU6Q-u9x6aJy4WJbmnmfR28AuMToFiMq7kKaUiwSRNIEIcJlsjoCQ5wylBDEs-OD9wCchbBACGWC41MwoDLNMoHoEEynXrdh6XwHG2vmuq1CA10BH0s3vYEazrTprK90DeeucbUr1-LHZIw5dL6MdgPj4VrY7TjWh3NwUug62IvtPQKfz0_T8WsyeX95Gz9MEkOJ6BLCMGcskznNtRE5JyYz0tqCGcoziwUzM8IQTbmQM6O5zW2MbVDOOKGmkJKOwP2Gu-xnjc2NbWOKWi191Wi_Uk5X6q_SVnNVum-FMUulxGkkXG8J3n31NnSqqYKxda1b6_qgKCY4Lg1zEa1kYzXeheBtsf8HI7XuQ236ULEP9duHWsWhq8OE-5FdAdFAN4YQpba0Xi1c79u4tf-wP5Fsl6M</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Dmitrieva, Natalia</creator><creator>Gholami, Samira</creator><creator>Alleva, Claudia</creator><creator>Carloni, Paolo</creator><creator>Alfonso-Prieto, Mercedes</creator><creator>Fahlke, Christoph</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4509-4517</orcidid><orcidid>https://orcid.org/0000-0002-8133-0890</orcidid><orcidid>https://orcid.org/0000-0002-9010-0149</orcidid><orcidid>https://orcid.org/0000-0001-8602-9952</orcidid><orcidid>https://orcid.org/0009-0000-1371-553X</orcidid><orcidid>https://orcid.org/0000-0001-8595-9250</orcidid></search><sort><creationdate>20241025</creationdate><title>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</title><author>Dmitrieva, Natalia ; Gholami, Samira ; Alleva, Claudia ; Carloni, Paolo ; Alfonso-Prieto, Mercedes ; Fahlke, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-26176659d3dac8d72c5c9eef6c375e186cb26034789bca7ede945c0d6723cf993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>EMBO40</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Organic Anion Transporters - chemistry</topic><topic>Organic Anion Transporters - genetics</topic><topic>Organic Anion Transporters - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmitrieva, Natalia</creatorcontrib><creatorcontrib>Gholami, Samira</creatorcontrib><creatorcontrib>Alleva, Claudia</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><creatorcontrib>Alfonso-Prieto, Mercedes</creatorcontrib><creatorcontrib>Fahlke, Christoph</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmitrieva, Natalia</au><au>Gholami, Samira</au><au>Alleva, Claudia</au><au>Carloni, Paolo</au><au>Alfonso-Prieto, Mercedes</au><au>Fahlke, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>43</volume><issue>24</issue><spage>6740</spage><epage>6765</epage><pages>6740-6765</pages><issn>1460-2075</issn><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the
d
-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton,
apo
DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.
Synopsis
The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity.
DgoT transports negatively charged galactonate in symport with two protons.
Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate.
The conserved R47 couples substrate binding to the conformational changes in the protein.
Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated.
Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39455803</pmid><doi>10.1038/s44318-024-00279-y</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4509-4517</orcidid><orcidid>https://orcid.org/0000-0002-8133-0890</orcidid><orcidid>https://orcid.org/0000-0002-9010-0149</orcidid><orcidid>https://orcid.org/0000-0001-8602-9952</orcidid><orcidid>https://orcid.org/0009-0000-1371-553X</orcidid><orcidid>https://orcid.org/0000-0001-8595-9250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1460-2075 |
ispartof | The EMBO journal, 2024-10, Vol.43 (24), p.6740-6765 |
issn | 1460-2075 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11649914 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Transport Biomedical and Life Sciences EMBO40 Life Sciences Models, Molecular Molecular Dynamics Simulation Organic Anion Transporters - chemistry Organic Anion Transporters - genetics Organic Anion Transporters - metabolism Protein Conformation |
title | Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20mechanism%20of%20DgoT,%20a%20bacterial%20homolog%20of%20SLC17%20organic%20anion%20transporters&rft.jtitle=The%20EMBO%20journal&rft.au=Dmitrieva,%20Natalia&rft.date=2024-10-25&rft.volume=43&rft.issue=24&rft.spage=6740&rft.epage=6765&rft.pages=6740-6765&rft.issn=1460-2075&rft.eissn=1460-2075&rft_id=info:doi/10.1038/s44318-024-00279-y&rft_dat=%3Cproquest_pubme%3E3121058178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121058178&rft_id=info:pmid/39455803&rfr_iscdi=true |