Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters

The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2024-10, Vol.43 (24), p.6740-6765
Hauptverfasser: Dmitrieva, Natalia, Gholami, Samira, Alleva, Claudia, Carloni, Paolo, Alfonso-Prieto, Mercedes, Fahlke, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6765
container_issue 24
container_start_page 6740
container_title The EMBO journal
container_volume 43
creator Dmitrieva, Natalia
Gholami, Samira
Alleva, Claudia
Carloni, Paolo
Alfonso-Prieto, Mercedes
Fahlke, Christoph
description The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the d -galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding. Synopsis The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity. DgoT transports negatively charged galactonate in symport with two protons. Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate. The conserved R47 couples substrate binding to the conformational changes in the protein. Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated. Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.
doi_str_mv 10.1038/s44318-024-00279-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11649914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121058178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-26176659d3dac8d72c5c9eef6c375e186cb26034789bca7ede945c0d6723cf993</originalsourceid><addsrcrecordid>eNp9kUlPwzAUhC0EoqXwBzggHzkQ8JJ4OSFUVqkSB8rZch0nTZXExU6Q-u9x6aJy4WJbmnmfR28AuMToFiMq7kKaUiwSRNIEIcJlsjoCQ5wylBDEs-OD9wCchbBACGWC41MwoDLNMoHoEEynXrdh6XwHG2vmuq1CA10BH0s3vYEazrTprK90DeeucbUr1-LHZIw5dL6MdgPj4VrY7TjWh3NwUug62IvtPQKfz0_T8WsyeX95Gz9MEkOJ6BLCMGcskznNtRE5JyYz0tqCGcoziwUzM8IQTbmQM6O5zW2MbVDOOKGmkJKOwP2Gu-xnjc2NbWOKWi191Wi_Uk5X6q_SVnNVum-FMUulxGkkXG8J3n31NnSqqYKxda1b6_qgKCY4Lg1zEa1kYzXeheBtsf8HI7XuQ236ULEP9duHWsWhq8OE-5FdAdFAN4YQpba0Xi1c79u4tf-wP5Fsl6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121058178</pqid></control><display><type>article</type><title>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dmitrieva, Natalia ; Gholami, Samira ; Alleva, Claudia ; Carloni, Paolo ; Alfonso-Prieto, Mercedes ; Fahlke, Christoph</creator><creatorcontrib>Dmitrieva, Natalia ; Gholami, Samira ; Alleva, Claudia ; Carloni, Paolo ; Alfonso-Prieto, Mercedes ; Fahlke, Christoph</creatorcontrib><description>The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the d -galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding. Synopsis The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity. DgoT transports negatively charged galactonate in symport with two protons. Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate. The conserved R47 couples substrate binding to the conformational changes in the protein. Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated. Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.</description><identifier>ISSN: 1460-2075</identifier><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/s44318-024-00279-y</identifier><identifier>PMID: 39455803</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Transport ; Biomedical and Life Sciences ; EMBO40 ; Life Sciences ; Models, Molecular ; Molecular Dynamics Simulation ; Organic Anion Transporters - chemistry ; Organic Anion Transporters - genetics ; Organic Anion Transporters - metabolism ; Protein Conformation</subject><ispartof>The EMBO journal, 2024-10, Vol.43 (24), p.6740-6765</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-26176659d3dac8d72c5c9eef6c375e186cb26034789bca7ede945c0d6723cf993</cites><orcidid>0000-0003-4509-4517 ; 0000-0002-8133-0890 ; 0000-0002-9010-0149 ; 0000-0001-8602-9952 ; 0009-0000-1371-553X ; 0000-0001-8595-9250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s44318-024-00279-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s44318-024-00279-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39455803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmitrieva, Natalia</creatorcontrib><creatorcontrib>Gholami, Samira</creatorcontrib><creatorcontrib>Alleva, Claudia</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><creatorcontrib>Alfonso-Prieto, Mercedes</creatorcontrib><creatorcontrib>Fahlke, Christoph</creatorcontrib><title>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the d -galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding. Synopsis The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity. DgoT transports negatively charged galactonate in symport with two protons. Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate. The conserved R47 couples substrate binding to the conformational changes in the protein. Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated. Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>EMBO40</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Organic Anion Transporters - chemistry</subject><subject>Organic Anion Transporters - genetics</subject><subject>Organic Anion Transporters - metabolism</subject><subject>Protein Conformation</subject><issn>1460-2075</issn><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAUhC0EoqXwBzggHzkQ8JJ4OSFUVqkSB8rZch0nTZXExU6Q-u9x6aJy4WJbmnmfR28AuMToFiMq7kKaUiwSRNIEIcJlsjoCQ5wylBDEs-OD9wCchbBACGWC41MwoDLNMoHoEEynXrdh6XwHG2vmuq1CA10BH0s3vYEazrTprK90DeeucbUr1-LHZIw5dL6MdgPj4VrY7TjWh3NwUug62IvtPQKfz0_T8WsyeX95Gz9MEkOJ6BLCMGcskznNtRE5JyYz0tqCGcoziwUzM8IQTbmQM6O5zW2MbVDOOKGmkJKOwP2Gu-xnjc2NbWOKWi191Wi_Uk5X6q_SVnNVum-FMUulxGkkXG8J3n31NnSqqYKxda1b6_qgKCY4Lg1zEa1kYzXeheBtsf8HI7XuQ236ULEP9duHWsWhq8OE-5FdAdFAN4YQpba0Xi1c79u4tf-wP5Fsl6M</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Dmitrieva, Natalia</creator><creator>Gholami, Samira</creator><creator>Alleva, Claudia</creator><creator>Carloni, Paolo</creator><creator>Alfonso-Prieto, Mercedes</creator><creator>Fahlke, Christoph</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4509-4517</orcidid><orcidid>https://orcid.org/0000-0002-8133-0890</orcidid><orcidid>https://orcid.org/0000-0002-9010-0149</orcidid><orcidid>https://orcid.org/0000-0001-8602-9952</orcidid><orcidid>https://orcid.org/0009-0000-1371-553X</orcidid><orcidid>https://orcid.org/0000-0001-8595-9250</orcidid></search><sort><creationdate>20241025</creationdate><title>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</title><author>Dmitrieva, Natalia ; Gholami, Samira ; Alleva, Claudia ; Carloni, Paolo ; Alfonso-Prieto, Mercedes ; Fahlke, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-26176659d3dac8d72c5c9eef6c375e186cb26034789bca7ede945c0d6723cf993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>EMBO40</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Organic Anion Transporters - chemistry</topic><topic>Organic Anion Transporters - genetics</topic><topic>Organic Anion Transporters - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmitrieva, Natalia</creatorcontrib><creatorcontrib>Gholami, Samira</creatorcontrib><creatorcontrib>Alleva, Claudia</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><creatorcontrib>Alfonso-Prieto, Mercedes</creatorcontrib><creatorcontrib>Fahlke, Christoph</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmitrieva, Natalia</au><au>Gholami, Samira</au><au>Alleva, Claudia</au><au>Carloni, Paolo</au><au>Alfonso-Prieto, Mercedes</au><au>Fahlke, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>43</volume><issue>24</issue><spage>6740</spage><epage>6765</epage><pages>6740-6765</pages><issn>1460-2075</issn><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the d -galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton transfer from D46 to E133 opens the intracellular gate and permits galactonate dissociation either in its unprotonated form or after proton transfer from E133. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding. Synopsis The bacterial D-galactonate transporter (DgoT) and the eukaryotic solute carrier 17 (SLC17) family share key functional residues, but differ in both substrate selectivity and transport stoichiometry. Here, molecular dynamics simulations combined with experimental approaches describe the transport mechanisms of DgoT and the molecular mechanisms that underlie its specificity. DgoT transports negatively charged galactonate in symport with two protons. Protonation of D46 and E133 permits galactonate binding, followed by closure of the extracellular gate. The conserved R47 couples substrate binding to the conformational changes in the protein. Deprotonation of D46 opens the intracellular gate and permits galactonate dissociation, either protonated or deprotonated. Key amino acid residues in the coupled transport cycle of a major facilitator-superfamily protein are revealed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39455803</pmid><doi>10.1038/s44318-024-00279-y</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4509-4517</orcidid><orcidid>https://orcid.org/0000-0002-8133-0890</orcidid><orcidid>https://orcid.org/0000-0002-9010-0149</orcidid><orcidid>https://orcid.org/0000-0001-8602-9952</orcidid><orcidid>https://orcid.org/0009-0000-1371-553X</orcidid><orcidid>https://orcid.org/0000-0001-8595-9250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1460-2075
ispartof The EMBO journal, 2024-10, Vol.43 (24), p.6740-6765
issn 1460-2075
0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11649914
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Transport
Biomedical and Life Sciences
EMBO40
Life Sciences
Models, Molecular
Molecular Dynamics Simulation
Organic Anion Transporters - chemistry
Organic Anion Transporters - genetics
Organic Anion Transporters - metabolism
Protein Conformation
title Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20mechanism%20of%20DgoT,%20a%20bacterial%20homolog%20of%20SLC17%20organic%20anion%20transporters&rft.jtitle=The%20EMBO%20journal&rft.au=Dmitrieva,%20Natalia&rft.date=2024-10-25&rft.volume=43&rft.issue=24&rft.spage=6740&rft.epage=6765&rft.pages=6740-6765&rft.issn=1460-2075&rft.eissn=1460-2075&rft_id=info:doi/10.1038/s44318-024-00279-y&rft_dat=%3Cproquest_pubme%3E3121058178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121058178&rft_id=info:pmid/39455803&rfr_iscdi=true