Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2

Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-12, Vol.128 (49), p.10465-10473
Hauptverfasser: Løyland, Sverre, Uggerud, Einar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10473
container_issue 49
container_start_page 10465
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 128
creator Løyland, Sverre
Uggerud, Einar
description Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.
doi_str_mv 10.1021/acs.jpca.4c03722
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11647889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132612505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-b09856ee4d6846ecd400e7a7a505bd0ed43e597bb060c919f93fe18de380378c3</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAIyuPO0UcOpPgRO_YJoQpaJFArBGdr42xpqjYucQL07zG0F0672hmNdmYIueRsyJngN-DjcLnxMMw9k4UQB2TAlWCZElwdpp0Zmykt7Qk5jXHJGONS5MfkRFpl8sLoAXkehfUGu7p5py8IvqtDQ2fQLb5gG2nd0DHEbLaAiHT6XVfwh4c5HemJpuWWztrQhQY6rOhETMU5OZrDKuLFfp6Rt4f719Eke5qOH0d3TxkIzrusZNYojZhX2uQafZUzhgUUoJgqK4ZVLlHZoiyZZt5yO7dyjtxUKE2yabw8I7c73U1frrHy2HQtrNymrdfQbl2A2v1Hmnrh3sOn41wn38Ymhau9Qhs-eoydW9fR42oFDYY-OpmS0lykhxL1ekdNabtl6NsmWXOcud8K3N8xVeD2FcgfggN5Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132612505</pqid></control><display><type>article</type><title>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</title><source>ACS Publications</source><creator>Løyland, Sverre ; Uggerud, Einar</creator><creatorcontrib>Løyland, Sverre ; Uggerud, Einar</creatorcontrib><description>Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.</description><identifier>ISSN: 1089-5639</identifier><identifier>ISSN: 1520-5215</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.4c03722</identifier><identifier>PMID: 39584786</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2024-12, Vol.128 (49), p.10465-10473</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7258-7398 ; 0000-0003-2732-2336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.4c03722$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.4c03722$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Løyland, Sverre</creatorcontrib><creatorcontrib>Uggerud, Einar</creatorcontrib><title>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBAIyuPO0UcOpPgRO_YJoQpaJFArBGdr42xpqjYucQL07zG0F0672hmNdmYIueRsyJngN-DjcLnxMMw9k4UQB2TAlWCZElwdpp0Zmykt7Qk5jXHJGONS5MfkRFpl8sLoAXkehfUGu7p5py8IvqtDQ2fQLb5gG2nd0DHEbLaAiHT6XVfwh4c5HemJpuWWztrQhQY6rOhETMU5OZrDKuLFfp6Rt4f719Eke5qOH0d3TxkIzrusZNYojZhX2uQafZUzhgUUoJgqK4ZVLlHZoiyZZt5yO7dyjtxUKE2yabw8I7c73U1frrHy2HQtrNymrdfQbl2A2v1Hmnrh3sOn41wn38Ymhau9Qhs-eoydW9fR42oFDYY-OpmS0lykhxL1ekdNabtl6NsmWXOcud8K3N8xVeD2FcgfggN5Mw</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Løyland, Sverre</creator><creator>Uggerud, Einar</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7258-7398</orcidid><orcidid>https://orcid.org/0000-0003-2732-2336</orcidid></search><sort><creationdate>20241212</creationdate><title>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</title><author>Løyland, Sverre ; Uggerud, Einar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-b09856ee4d6846ecd400e7a7a505bd0ed43e597bb060c919f93fe18de380378c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Løyland, Sverre</creatorcontrib><creatorcontrib>Uggerud, Einar</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Løyland, Sverre</au><au>Uggerud, Einar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>128</volume><issue>49</issue><spage>10465</spage><epage>10473</epage><pages>10465-10473</pages><issn>1089-5639</issn><issn>1520-5215</issn><eissn>1520-5215</eissn><abstract>Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.</abstract><pub>American Chemical Society</pub><pmid>39584786</pmid><doi>10.1021/acs.jpca.4c03722</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7258-7398</orcidid><orcidid>https://orcid.org/0000-0003-2732-2336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-12, Vol.128 (49), p.10465-10473
issn 1089-5639
1520-5215
1520-5215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11647889
source ACS Publications
subjects A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
title Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20Reaction%20Pathways%20in%20Gas-Phase%20Oxidation%20of%20C6H6%20by%20Protonated%20H2O2&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=L%C3%B8yland,%20Sverre&rft.date=2024-12-12&rft.volume=128&rft.issue=49&rft.spage=10465&rft.epage=10473&rft.pages=10465-10473&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.4c03722&rft_dat=%3Cproquest_pubme%3E3132612505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132612505&rft_id=info:pmid/39584786&rfr_iscdi=true