Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2
Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-12, Vol.128 (49), p.10465-10473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10473 |
---|---|
container_issue | 49 |
container_start_page | 10465 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 128 |
creator | Løyland, Sverre Uggerud, Einar |
description | Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described. |
doi_str_mv | 10.1021/acs.jpca.4c03722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11647889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132612505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-b09856ee4d6846ecd400e7a7a505bd0ed43e597bb060c919f93fe18de380378c3</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBAIyuPO0UcOpPgRO_YJoQpaJFArBGdr42xpqjYucQL07zG0F0672hmNdmYIueRsyJngN-DjcLnxMMw9k4UQB2TAlWCZElwdpp0Zmykt7Qk5jXHJGONS5MfkRFpl8sLoAXkehfUGu7p5py8IvqtDQ2fQLb5gG2nd0DHEbLaAiHT6XVfwh4c5HemJpuWWztrQhQY6rOhETMU5OZrDKuLFfp6Rt4f719Eke5qOH0d3TxkIzrusZNYojZhX2uQafZUzhgUUoJgqK4ZVLlHZoiyZZt5yO7dyjtxUKE2yabw8I7c73U1frrHy2HQtrNymrdfQbl2A2v1Hmnrh3sOn41wn38Ymhau9Qhs-eoydW9fR42oFDYY-OpmS0lykhxL1ekdNabtl6NsmWXOcud8K3N8xVeD2FcgfggN5Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132612505</pqid></control><display><type>article</type><title>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</title><source>ACS Publications</source><creator>Løyland, Sverre ; Uggerud, Einar</creator><creatorcontrib>Løyland, Sverre ; Uggerud, Einar</creatorcontrib><description>Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.</description><identifier>ISSN: 1089-5639</identifier><identifier>ISSN: 1520-5215</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.4c03722</identifier><identifier>PMID: 39584786</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-12, Vol.128 (49), p.10465-10473</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7258-7398 ; 0000-0003-2732-2336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.4c03722$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.4c03722$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Løyland, Sverre</creatorcontrib><creatorcontrib>Uggerud, Einar</creatorcontrib><title>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBAIyuPO0UcOpPgRO_YJoQpaJFArBGdr42xpqjYucQL07zG0F0672hmNdmYIueRsyJngN-DjcLnxMMw9k4UQB2TAlWCZElwdpp0Zmykt7Qk5jXHJGONS5MfkRFpl8sLoAXkehfUGu7p5py8IvqtDQ2fQLb5gG2nd0DHEbLaAiHT6XVfwh4c5HemJpuWWztrQhQY6rOhETMU5OZrDKuLFfp6Rt4f719Eke5qOH0d3TxkIzrusZNYojZhX2uQafZUzhgUUoJgqK4ZVLlHZoiyZZt5yO7dyjtxUKE2yabw8I7c73U1frrHy2HQtrNymrdfQbl2A2v1Hmnrh3sOn41wn38Ymhau9Qhs-eoydW9fR42oFDYY-OpmS0lykhxL1ekdNabtl6NsmWXOcud8K3N8xVeD2FcgfggN5Mw</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Løyland, Sverre</creator><creator>Uggerud, Einar</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7258-7398</orcidid><orcidid>https://orcid.org/0000-0003-2732-2336</orcidid></search><sort><creationdate>20241212</creationdate><title>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</title><author>Løyland, Sverre ; Uggerud, Einar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-b09856ee4d6846ecd400e7a7a505bd0ed43e597bb060c919f93fe18de380378c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Løyland, Sverre</creatorcontrib><creatorcontrib>Uggerud, Einar</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Løyland, Sverre</au><au>Uggerud, Einar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>128</volume><issue>49</issue><spage>10465</spage><epage>10473</epage><pages>10465-10473</pages><issn>1089-5639</issn><issn>1520-5215</issn><eissn>1520-5215</eissn><abstract>Reactions between protonated hydrogen peroxide and benzene (and benzene-d 6) have been studied in the gas phase using an FT-ICR mass spectrometer. Four competing paths for the bimolecular system were identified, namely, proton transfer, hydride abstraction, dissociative single-electron transfer, and an electrophilic addition of HO+ to give the Wheland intermediate [C6H6, OH]+ followed by a subsequent elimination of water. The three latter pathways correspond to three different ways to oxidize benzene. All reaction mechanisms have been modeled using quantum chemical methods, and the calculations are in agreement with the experimental observations. The total reaction rate proceeds at collision rate (slightly higher than the calculated Langevin capture rate), which exemplifies the high reactivity of H3O2 + toward arenes. These observations demonstrate a much richer chemical landscape than previously inferred from the corresponding condensed phase reaction, where only electrophilic substitution by solvated HO+ was described.</abstract><pub>American Chemical Society</pub><pmid>39584786</pmid><doi>10.1021/acs.jpca.4c03722</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7258-7398</orcidid><orcidid>https://orcid.org/0000-0003-2732-2336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-12, Vol.128 (49), p.10465-10473 |
issn | 1089-5639 1520-5215 1520-5215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11647889 |
source | ACS Publications |
subjects | A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters |
title | Competing Reaction Pathways in Gas-Phase Oxidation of C6H6 by Protonated H2O2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20Reaction%20Pathways%20in%20Gas-Phase%20Oxidation%20of%20C6H6%20by%20Protonated%20H2O2&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=L%C3%B8yland,%20Sverre&rft.date=2024-12-12&rft.volume=128&rft.issue=49&rft.spage=10465&rft.epage=10473&rft.pages=10465-10473&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.4c03722&rft_dat=%3Cproquest_pubme%3E3132612505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132612505&rft_id=info:pmid/39584786&rfr_iscdi=true |