Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors
We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH4) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-12, Vol.16 (49), p.68181-68196 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68196 |
---|---|
container_issue | 49 |
container_start_page | 68181 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Dunlap, John H. Feng, Haosheng Pioch, Thomas Volk, Amanda A. Giordano, Andrea N. Reidell, Alexander Tran, Ly D. Hampton, Cheri M. Luo, Shao-Xiong Lennon Rao, Rahul Crouse, Christopher A. Swager, Timothy M. Baldwin, Luke A. |
description | We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH4) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R1). The quaternization of P4VP with Br-R1 was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection. Polymers (PyBrR1) with different degrees of functionalization were used to disperse SWCNTs and subsequently incorporated into sensors containing a platinum complex as an aerobic oxidative catalyst with a polyoxometalate (POM) redox mediator to facilitate room-temperature CH4 sensing. As the degree of quaternization in the PyBrR1-CNT composites increased, improvements in response magnitude were observed, with nominally 10% quaternized PyBrR1 giving the largest response. Incorporation of PEG improved sensor stability at relative humidities between 57–90% versus sensors fabricated from CNT dispersions with unfunctionalized P4VP. Devices fabricated with these dispersions outperformed those prepared in situ under dry conditions, and exhibited greater stability at elevated humidities. The influence of Keggin-type POM character was also evaluated to identify alternative POMs for enhanced sensor performance at high humidity. In an effort to identify areas for further improvement in algorithm performance for polymer functionalization, a kinetically informed machine learning model was explored as a route to predict reactivity of pyridine units and alkyl bromides under flow conditions. |
doi_str_mv | 10.1021/acsami.4c14279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11647762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133418342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-dba52c53c81c9f07f4c03e3770dbbd4afffa29398fcf0b2099060b3bb0b779c43</originalsourceid><addsrcrecordid>eNp1kc-P1CAUxxujcdfVq0fD0WzSkV9th5NxG0dNVtdEPZMHBYdNCyPQNbNX_3FpZpzowRPk8Xkf4H2r6jnBK4IpeQU6weRWXBNOO_GgOieC83pNG_rwtOf8rHqS0i3GLaO4eVydMdEISlh7Xv3qg8_Oz2FOaDOGn6jfmsmlHPcI_ICuYG-SA49udtlN7h6yCx7ZENHnMO4nE-vN7PVShNHdmwH1EFUhPoEPeVamvoK0VBdpLKaU3Z1BH03egjfoi_EpxPS0emRhTObZcb2ovm3efu3f19c37z70b65roB3J9aCgobphek20sLizXGNmWNfhQamBg7UWqGBibbXFimIhcIsVUwqrrhOas4vq9cG7m9VkBm18jjDKXXQTxL0M4OS_J95t5fdwJwlpede1tBheHg0x_JhNyrLMSptxLL8pE5SMMMbJmvEFXR1QHUNK0djTPQTLJTp5iE4eoysNL_5-3Qn_k1UBLg9AaZS3YY5l5ul_tt8YlqjB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133418342</pqid></control><display><type>article</type><title>Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors</title><source>American Chemical Society Journals</source><creator>Dunlap, John H. ; Feng, Haosheng ; Pioch, Thomas ; Volk, Amanda A. ; Giordano, Andrea N. ; Reidell, Alexander ; Tran, Ly D. ; Hampton, Cheri M. ; Luo, Shao-Xiong Lennon ; Rao, Rahul ; Crouse, Christopher A. ; Swager, Timothy M. ; Baldwin, Luke A.</creator><creatorcontrib>Dunlap, John H. ; Feng, Haosheng ; Pioch, Thomas ; Volk, Amanda A. ; Giordano, Andrea N. ; Reidell, Alexander ; Tran, Ly D. ; Hampton, Cheri M. ; Luo, Shao-Xiong Lennon ; Rao, Rahul ; Crouse, Christopher A. ; Swager, Timothy M. ; Baldwin, Luke A.</creatorcontrib><description>We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH4) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R1). The quaternization of P4VP with Br-R1 was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection. Polymers (PyBrR1) with different degrees of functionalization were used to disperse SWCNTs and subsequently incorporated into sensors containing a platinum complex as an aerobic oxidative catalyst with a polyoxometalate (POM) redox mediator to facilitate room-temperature CH4 sensing. As the degree of quaternization in the PyBrR1-CNT composites increased, improvements in response magnitude were observed, with nominally 10% quaternized PyBrR1 giving the largest response. Incorporation of PEG improved sensor stability at relative humidities between 57–90% versus sensors fabricated from CNT dispersions with unfunctionalized P4VP. Devices fabricated with these dispersions outperformed those prepared in situ under dry conditions, and exhibited greater stability at elevated humidities. The influence of Keggin-type POM character was also evaluated to identify alternative POMs for enhanced sensor performance at high humidity. In an effort to identify areas for further improvement in algorithm performance for polymer functionalization, a kinetically informed machine learning model was explored as a route to predict reactivity of pyridine units and alkyl bromides under flow conditions.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c14279</identifier><identifier>PMID: 39592136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.68181-68196</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a271t-dba52c53c81c9f07f4c03e3770dbbd4afffa29398fcf0b2099060b3bb0b779c43</cites><orcidid>0000-0001-5308-4576 ; 0000-0002-3577-0510 ; 0000-0002-7787-238X ; 0000-0003-1031-7733 ; 0009-0000-7333-9732 ; 0009-0001-6567-3957 ; 0000-0001-6668-7747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c14279$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c14279$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39592136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunlap, John H.</creatorcontrib><creatorcontrib>Feng, Haosheng</creatorcontrib><creatorcontrib>Pioch, Thomas</creatorcontrib><creatorcontrib>Volk, Amanda A.</creatorcontrib><creatorcontrib>Giordano, Andrea N.</creatorcontrib><creatorcontrib>Reidell, Alexander</creatorcontrib><creatorcontrib>Tran, Ly D.</creatorcontrib><creatorcontrib>Hampton, Cheri M.</creatorcontrib><creatorcontrib>Luo, Shao-Xiong Lennon</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Crouse, Christopher A.</creatorcontrib><creatorcontrib>Swager, Timothy M.</creatorcontrib><creatorcontrib>Baldwin, Luke A.</creatorcontrib><title>Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH4) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R1). The quaternization of P4VP with Br-R1 was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection. Polymers (PyBrR1) with different degrees of functionalization were used to disperse SWCNTs and subsequently incorporated into sensors containing a platinum complex as an aerobic oxidative catalyst with a polyoxometalate (POM) redox mediator to facilitate room-temperature CH4 sensing. As the degree of quaternization in the PyBrR1-CNT composites increased, improvements in response magnitude were observed, with nominally 10% quaternized PyBrR1 giving the largest response. Incorporation of PEG improved sensor stability at relative humidities between 57–90% versus sensors fabricated from CNT dispersions with unfunctionalized P4VP. Devices fabricated with these dispersions outperformed those prepared in situ under dry conditions, and exhibited greater stability at elevated humidities. The influence of Keggin-type POM character was also evaluated to identify alternative POMs for enhanced sensor performance at high humidity. In an effort to identify areas for further improvement in algorithm performance for polymer functionalization, a kinetically informed machine learning model was explored as a route to predict reactivity of pyridine units and alkyl bromides under flow conditions.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc-P1CAUxxujcdfVq0fD0WzSkV9th5NxG0dNVtdEPZMHBYdNCyPQNbNX_3FpZpzowRPk8Xkf4H2r6jnBK4IpeQU6weRWXBNOO_GgOieC83pNG_rwtOf8rHqS0i3GLaO4eVydMdEISlh7Xv3qg8_Oz2FOaDOGn6jfmsmlHPcI_ICuYG-SA49udtlN7h6yCx7ZENHnMO4nE-vN7PVShNHdmwH1EFUhPoEPeVamvoK0VBdpLKaU3Z1BH03egjfoi_EpxPS0emRhTObZcb2ovm3efu3f19c37z70b65roB3J9aCgobphek20sLizXGNmWNfhQamBg7UWqGBibbXFimIhcIsVUwqrrhOas4vq9cG7m9VkBm18jjDKXXQTxL0M4OS_J95t5fdwJwlpede1tBheHg0x_JhNyrLMSptxLL8pE5SMMMbJmvEFXR1QHUNK0djTPQTLJTp5iE4eoysNL_5-3Qn_k1UBLg9AaZS3YY5l5ul_tt8YlqjB</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Dunlap, John H.</creator><creator>Feng, Haosheng</creator><creator>Pioch, Thomas</creator><creator>Volk, Amanda A.</creator><creator>Giordano, Andrea N.</creator><creator>Reidell, Alexander</creator><creator>Tran, Ly D.</creator><creator>Hampton, Cheri M.</creator><creator>Luo, Shao-Xiong Lennon</creator><creator>Rao, Rahul</creator><creator>Crouse, Christopher A.</creator><creator>Swager, Timothy M.</creator><creator>Baldwin, Luke A.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5308-4576</orcidid><orcidid>https://orcid.org/0000-0002-3577-0510</orcidid><orcidid>https://orcid.org/0000-0002-7787-238X</orcidid><orcidid>https://orcid.org/0000-0003-1031-7733</orcidid><orcidid>https://orcid.org/0009-0000-7333-9732</orcidid><orcidid>https://orcid.org/0009-0001-6567-3957</orcidid><orcidid>https://orcid.org/0000-0001-6668-7747</orcidid></search><sort><creationdate>20241211</creationdate><title>Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors</title><author>Dunlap, John H. ; Feng, Haosheng ; Pioch, Thomas ; Volk, Amanda A. ; Giordano, Andrea N. ; Reidell, Alexander ; Tran, Ly D. ; Hampton, Cheri M. ; Luo, Shao-Xiong Lennon ; Rao, Rahul ; Crouse, Christopher A. ; Swager, Timothy M. ; Baldwin, Luke A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-dba52c53c81c9f07f4c03e3770dbbd4afffa29398fcf0b2099060b3bb0b779c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunlap, John H.</creatorcontrib><creatorcontrib>Feng, Haosheng</creatorcontrib><creatorcontrib>Pioch, Thomas</creatorcontrib><creatorcontrib>Volk, Amanda A.</creatorcontrib><creatorcontrib>Giordano, Andrea N.</creatorcontrib><creatorcontrib>Reidell, Alexander</creatorcontrib><creatorcontrib>Tran, Ly D.</creatorcontrib><creatorcontrib>Hampton, Cheri M.</creatorcontrib><creatorcontrib>Luo, Shao-Xiong Lennon</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Crouse, Christopher A.</creatorcontrib><creatorcontrib>Swager, Timothy M.</creatorcontrib><creatorcontrib>Baldwin, Luke A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunlap, John H.</au><au>Feng, Haosheng</au><au>Pioch, Thomas</au><au>Volk, Amanda A.</au><au>Giordano, Andrea N.</au><au>Reidell, Alexander</au><au>Tran, Ly D.</au><au>Hampton, Cheri M.</au><au>Luo, Shao-Xiong Lennon</au><au>Rao, Rahul</au><au>Crouse, Christopher A.</au><au>Swager, Timothy M.</au><au>Baldwin, Luke A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>16</volume><issue>49</issue><spage>68181</spage><epage>68196</epage><pages>68181-68196</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH4) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R1). The quaternization of P4VP with Br-R1 was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection. Polymers (PyBrR1) with different degrees of functionalization were used to disperse SWCNTs and subsequently incorporated into sensors containing a platinum complex as an aerobic oxidative catalyst with a polyoxometalate (POM) redox mediator to facilitate room-temperature CH4 sensing. As the degree of quaternization in the PyBrR1-CNT composites increased, improvements in response magnitude were observed, with nominally 10% quaternized PyBrR1 giving the largest response. Incorporation of PEG improved sensor stability at relative humidities between 57–90% versus sensors fabricated from CNT dispersions with unfunctionalized P4VP. Devices fabricated with these dispersions outperformed those prepared in situ under dry conditions, and exhibited greater stability at elevated humidities. The influence of Keggin-type POM character was also evaluated to identify alternative POMs for enhanced sensor performance at high humidity. In an effort to identify areas for further improvement in algorithm performance for polymer functionalization, a kinetically informed machine learning model was explored as a route to predict reactivity of pyridine units and alkyl bromides under flow conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39592136</pmid><doi>10.1021/acsami.4c14279</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5308-4576</orcidid><orcidid>https://orcid.org/0000-0002-3577-0510</orcidid><orcidid>https://orcid.org/0000-0002-7787-238X</orcidid><orcidid>https://orcid.org/0000-0003-1031-7733</orcidid><orcidid>https://orcid.org/0009-0000-7333-9732</orcidid><orcidid>https://orcid.org/0009-0001-6567-3957</orcidid><orcidid>https://orcid.org/0000-0001-6668-7747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.68181-68196 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11647762 |
source | American Chemical Society Journals |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | Continuous Flow Chemistry and Bayesian Optimization for Polymer-Functionalized Carbon Nanotube-Based Chemiresistive Methane Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Flow%20Chemistry%20and%20Bayesian%20Optimization%20for%20Polymer-Functionalized%20Carbon%20Nanotube-Based%20Chemiresistive%20Methane%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dunlap,%20John%20H.&rft.date=2024-12-11&rft.volume=16&rft.issue=49&rft.spage=68181&rft.epage=68196&rft.pages=68181-68196&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c14279&rft_dat=%3Cproquest_pubme%3E3133418342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133418342&rft_id=info:pmid/39592136&rfr_iscdi=true |