Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping

Background Automated 4D flow MRI valvular flow quantification without time‐consuming manual segmentation might improve workflow. Purpose Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c‐AVSD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2025-01, Vol.61 (1), p.198-208
Hauptverfasser: Braekt, Thomas, Aben, Jean‐Paul, Maussen, Marc, Bosch, Harrie C.M., Houthuizen, Patrick, Roest, Arno A.W., Boogaard, Pieter J., Lamb, Hildo J., Westenberg, Jos J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 1
container_start_page 198
container_title Journal of magnetic resonance imaging
container_volume 61
creator Braekt, Thomas
Aben, Jean‐Paul
Maussen, Marc
Bosch, Harrie C.M.
Houthuizen, Patrick
Roest, Arno A.W.
Boogaard, Pieter J.
Lamb, Hildo J.
Westenberg, Jos J.M.
description Background Automated 4D flow MRI valvular flow quantification without time‐consuming manual segmentation might improve workflow. Purpose Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c‐AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). Study Type Retrospective. Population 27 c‐AVSD patients (median, 23 years; interquartile range, 16–31 years) and 24 healthy volunteers (25 years; 12.5–36.5 years). Field strength/Sequence Whole‐heart 4D flow MRI and cine steady‐state free precession at 3T. Assessment After automatic valve tracking, valve annuli were segmented on time‐resolved reformatted trans‐valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. Statistical Tests Comparisons between methods were assessed by Wilcoxon signed‐rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P 
doi_str_mv 10.1002/jmri.29370
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11645491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031133423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4620-4506e03ee18ccb8e3240a7efe7177cc48ba23caad2dbe609e052b4df206309983</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqVw4QcgS1wQUsr4I18ntCwsLGqFBKVXy3EmixcnXuxkq_0t_FkcslSFAyfbM48ezfhNkqcUzikAe7XtvDlnFS_gXnJKM8ZSlpX5_XiHjKe0hOIkeRTCFgCqSmQPkxNeZlkpKjhNfq5Gaw9kMQ6uUwM25FrZPZIvuOmwH9RgXE9a58kb61xDVtbdkEUIGMLUJivvOiLezvXLz2uy7rUdG9Nv7hiXyjdG6aP5yiv9fQJU30yPPuxjfbTKk2u0TpvhQC7VbheRx8mDVtmAT47nWfJ19e5q-SG9-PR-vVxcpFrkDFKRQY7AEWmpdV0iZwJUgS0WtCi0FmWtGNdKNaypMYcKIWO1aFoGOY8fUvKz5PXs3Y11h42Om3ll5c6bTvmDdMrIvzu9-SY3bi8pzUUmKhoNL44G736MGAbZmaDRWtWjG4PkwCnlXDAe0ef_oFs3-j7uJzkVgkGZVRCplzOlvQvBY3s7DQU5hS6n0OXv0CP87O78t-iflCNAZ-DGWDz8RyU_xhBn6S8xr7nU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144208590</pqid></control><display><type>article</type><title>Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Braekt, Thomas ; Aben, Jean‐Paul ; Maussen, Marc ; Bosch, Harrie C.M. ; Houthuizen, Patrick ; Roest, Arno A.W. ; Boogaard, Pieter J. ; Lamb, Hildo J. ; Westenberg, Jos J.M.</creator><creatorcontrib>Braekt, Thomas ; Aben, Jean‐Paul ; Maussen, Marc ; Bosch, Harrie C.M. ; Houthuizen, Patrick ; Roest, Arno A.W. ; Boogaard, Pieter J. ; Lamb, Hildo J. ; Westenberg, Jos J.M.</creatorcontrib><description>Background Automated 4D flow MRI valvular flow quantification without time‐consuming manual segmentation might improve workflow. Purpose Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c‐AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). Study Type Retrospective. Population 27 c‐AVSD patients (median, 23 years; interquartile range, 16–31 years) and 24 healthy volunteers (25 years; 12.5–36.5 years). Field strength/Sequence Whole‐heart 4D flow MRI and cine steady‐state free precession at 3T. Assessment After automatic valve tracking, valve annuli were segmented on time‐resolved reformatted trans‐valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. Statistical Tests Comparisons between methods were assessed by Wilcoxon signed‐rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P &lt; 0.05 was considered statistically significant, with multiple testing correction. Results AMS mean analysis time was significantly shorter compared with MS (5.3 ± 1.6 minutes vs. 9.1 ± 2.5 minutes). MS NFV variation (6.0%) was significantly smaller compared with AMS (6.3%), and AS (8.2%). Median NFV difference of RAVV, LAVV, PV, and AoV between segmentation methods ranged from −0.7–1.0 mL, −0.5–2.8 mL, −1.1–3.6 mL, and − 3.1–‐2.1 mL, respectively. Median RAVV and LAVV RF, between 7.1%–7.5% and 3.8%–4.3%, respectively, were not significantly different between methods. Intraobserver/interobserver agreement for AMS and MS was strong‐to‐excellent for NFV and RF (ICC ≥0.88). Data Conclusion MS demonstrates strongest internal consistency, followed closely by AMS, and AS. Automated segmentation, with or without manual correction, can be considered for 4D flow MRI valvular flow quantification. Level of Evidence 3 Technical Efficacy Stage 3</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.29370</identifier><identifier>PMID: 38558490</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>4D flow MRI ; Adolescent ; Adult ; automated valve segmentation ; Automation ; Blood flow ; Blood Flow Velocity - physiology ; Child ; Consistency ; Correlation coefficient ; Correlation coefficients ; Female ; Field strength ; Flow mapping ; Heart valves ; Heart Valves - diagnostic imaging ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging, Three-Dimensional - methods ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging, Cine - methods ; Male ; Mean ; Median (statistics) ; net flow volume ; Population studies ; postprocessing analysis time ; Rank tests ; Regurgitation ; regurgitation fraction ; Reproducibility of Results ; Retrospective Studies ; Segmentation ; Statistical analysis ; Statistical methods ; Statistical tests ; Tracking ; Velocity ; Workflow ; Young Adult</subject><ispartof>Journal of magnetic resonance imaging, 2025-01, Vol.61 (1), p.198-208</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4620-4506e03ee18ccb8e3240a7efe7177cc48ba23caad2dbe609e052b4df206309983</cites><orcidid>0000-0001-7945-3421 ; 0000-0003-1946-1715 ; 0000-0002-6969-2418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.29370$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.29370$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38558490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braekt, Thomas</creatorcontrib><creatorcontrib>Aben, Jean‐Paul</creatorcontrib><creatorcontrib>Maussen, Marc</creatorcontrib><creatorcontrib>Bosch, Harrie C.M.</creatorcontrib><creatorcontrib>Houthuizen, Patrick</creatorcontrib><creatorcontrib>Roest, Arno A.W.</creatorcontrib><creatorcontrib>Boogaard, Pieter J.</creatorcontrib><creatorcontrib>Lamb, Hildo J.</creatorcontrib><creatorcontrib>Westenberg, Jos J.M.</creatorcontrib><title>Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Automated 4D flow MRI valvular flow quantification without time‐consuming manual segmentation might improve workflow. Purpose Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c‐AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). Study Type Retrospective. Population 27 c‐AVSD patients (median, 23 years; interquartile range, 16–31 years) and 24 healthy volunteers (25 years; 12.5–36.5 years). Field strength/Sequence Whole‐heart 4D flow MRI and cine steady‐state free precession at 3T. Assessment After automatic valve tracking, valve annuli were segmented on time‐resolved reformatted trans‐valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. Statistical Tests Comparisons between methods were assessed by Wilcoxon signed‐rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P &lt; 0.05 was considered statistically significant, with multiple testing correction. Results AMS mean analysis time was significantly shorter compared with MS (5.3 ± 1.6 minutes vs. 9.1 ± 2.5 minutes). MS NFV variation (6.0%) was significantly smaller compared with AMS (6.3%), and AS (8.2%). Median NFV difference of RAVV, LAVV, PV, and AoV between segmentation methods ranged from −0.7–1.0 mL, −0.5–2.8 mL, −1.1–3.6 mL, and − 3.1–‐2.1 mL, respectively. Median RAVV and LAVV RF, between 7.1%–7.5% and 3.8%–4.3%, respectively, were not significantly different between methods. Intraobserver/interobserver agreement for AMS and MS was strong‐to‐excellent for NFV and RF (ICC ≥0.88). Data Conclusion MS demonstrates strongest internal consistency, followed closely by AMS, and AS. Automated segmentation, with or without manual correction, can be considered for 4D flow MRI valvular flow quantification. Level of Evidence 3 Technical Efficacy Stage 3</description><subject>4D flow MRI</subject><subject>Adolescent</subject><subject>Adult</subject><subject>automated valve segmentation</subject><subject>Automation</subject><subject>Blood flow</subject><subject>Blood Flow Velocity - physiology</subject><subject>Child</subject><subject>Consistency</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Female</subject><subject>Field strength</subject><subject>Flow mapping</subject><subject>Heart valves</subject><subject>Heart Valves - diagnostic imaging</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Male</subject><subject>Mean</subject><subject>Median (statistics)</subject><subject>net flow volume</subject><subject>Population studies</subject><subject>postprocessing analysis time</subject><subject>Rank tests</subject><subject>Regurgitation</subject><subject>regurgitation fraction</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Segmentation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Tracking</subject><subject>Velocity</subject><subject>Workflow</subject><subject>Young Adult</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhiMEoqVw4QcgS1wQUsr4I18ntCwsLGqFBKVXy3EmixcnXuxkq_0t_FkcslSFAyfbM48ezfhNkqcUzikAe7XtvDlnFS_gXnJKM8ZSlpX5_XiHjKe0hOIkeRTCFgCqSmQPkxNeZlkpKjhNfq5Gaw9kMQ6uUwM25FrZPZIvuOmwH9RgXE9a58kb61xDVtbdkEUIGMLUJivvOiLezvXLz2uy7rUdG9Nv7hiXyjdG6aP5yiv9fQJU30yPPuxjfbTKk2u0TpvhQC7VbheRx8mDVtmAT47nWfJ19e5q-SG9-PR-vVxcpFrkDFKRQY7AEWmpdV0iZwJUgS0WtCi0FmWtGNdKNaypMYcKIWO1aFoGOY8fUvKz5PXs3Y11h42Om3ll5c6bTvmDdMrIvzu9-SY3bi8pzUUmKhoNL44G736MGAbZmaDRWtWjG4PkwCnlXDAe0ef_oFs3-j7uJzkVgkGZVRCplzOlvQvBY3s7DQU5hS6n0OXv0CP87O78t-iflCNAZ-DGWDz8RyU_xhBn6S8xr7nU</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Braekt, Thomas</creator><creator>Aben, Jean‐Paul</creator><creator>Maussen, Marc</creator><creator>Bosch, Harrie C.M.</creator><creator>Houthuizen, Patrick</creator><creator>Roest, Arno A.W.</creator><creator>Boogaard, Pieter J.</creator><creator>Lamb, Hildo J.</creator><creator>Westenberg, Jos J.M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7945-3421</orcidid><orcidid>https://orcid.org/0000-0003-1946-1715</orcidid><orcidid>https://orcid.org/0000-0002-6969-2418</orcidid></search><sort><creationdate>202501</creationdate><title>Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping</title><author>Braekt, Thomas ; Aben, Jean‐Paul ; Maussen, Marc ; Bosch, Harrie C.M. ; Houthuizen, Patrick ; Roest, Arno A.W. ; Boogaard, Pieter J. ; Lamb, Hildo J. ; Westenberg, Jos J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4620-4506e03ee18ccb8e3240a7efe7177cc48ba23caad2dbe609e052b4df206309983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>4D flow MRI</topic><topic>Adolescent</topic><topic>Adult</topic><topic>automated valve segmentation</topic><topic>Automation</topic><topic>Blood flow</topic><topic>Blood Flow Velocity - physiology</topic><topic>Child</topic><topic>Consistency</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Female</topic><topic>Field strength</topic><topic>Flow mapping</topic><topic>Heart valves</topic><topic>Heart Valves - diagnostic imaging</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Male</topic><topic>Mean</topic><topic>Median (statistics)</topic><topic>net flow volume</topic><topic>Population studies</topic><topic>postprocessing analysis time</topic><topic>Rank tests</topic><topic>Regurgitation</topic><topic>regurgitation fraction</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Segmentation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Tracking</topic><topic>Velocity</topic><topic>Workflow</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braekt, Thomas</creatorcontrib><creatorcontrib>Aben, Jean‐Paul</creatorcontrib><creatorcontrib>Maussen, Marc</creatorcontrib><creatorcontrib>Bosch, Harrie C.M.</creatorcontrib><creatorcontrib>Houthuizen, Patrick</creatorcontrib><creatorcontrib>Roest, Arno A.W.</creatorcontrib><creatorcontrib>Boogaard, Pieter J.</creatorcontrib><creatorcontrib>Lamb, Hildo J.</creatorcontrib><creatorcontrib>Westenberg, Jos J.M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braekt, Thomas</au><au>Aben, Jean‐Paul</au><au>Maussen, Marc</au><au>Bosch, Harrie C.M.</au><au>Houthuizen, Patrick</au><au>Roest, Arno A.W.</au><au>Boogaard, Pieter J.</au><au>Lamb, Hildo J.</au><au>Westenberg, Jos J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2025-01</date><risdate>2025</risdate><volume>61</volume><issue>1</issue><spage>198</spage><epage>208</epage><pages>198-208</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Background Automated 4D flow MRI valvular flow quantification without time‐consuming manual segmentation might improve workflow. Purpose Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c‐AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). Study Type Retrospective. Population 27 c‐AVSD patients (median, 23 years; interquartile range, 16–31 years) and 24 healthy volunteers (25 years; 12.5–36.5 years). Field strength/Sequence Whole‐heart 4D flow MRI and cine steady‐state free precession at 3T. Assessment After automatic valve tracking, valve annuli were segmented on time‐resolved reformatted trans‐valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. Statistical Tests Comparisons between methods were assessed by Wilcoxon signed‐rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P &lt; 0.05 was considered statistically significant, with multiple testing correction. Results AMS mean analysis time was significantly shorter compared with MS (5.3 ± 1.6 minutes vs. 9.1 ± 2.5 minutes). MS NFV variation (6.0%) was significantly smaller compared with AMS (6.3%), and AS (8.2%). Median NFV difference of RAVV, LAVV, PV, and AoV between segmentation methods ranged from −0.7–1.0 mL, −0.5–2.8 mL, −1.1–3.6 mL, and − 3.1–‐2.1 mL, respectively. Median RAVV and LAVV RF, between 7.1%–7.5% and 3.8%–4.3%, respectively, were not significantly different between methods. Intraobserver/interobserver agreement for AMS and MS was strong‐to‐excellent for NFV and RF (ICC ≥0.88). Data Conclusion MS demonstrates strongest internal consistency, followed closely by AMS, and AS. Automated segmentation, with or without manual correction, can be considered for 4D flow MRI valvular flow quantification. Level of Evidence 3 Technical Efficacy Stage 3</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38558490</pmid><doi>10.1002/jmri.29370</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7945-3421</orcidid><orcidid>https://orcid.org/0000-0003-1946-1715</orcidid><orcidid>https://orcid.org/0000-0002-6969-2418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2025-01, Vol.61 (1), p.198-208
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11645491
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 4D flow MRI
Adolescent
Adult
automated valve segmentation
Automation
Blood flow
Blood Flow Velocity - physiology
Child
Consistency
Correlation coefficient
Correlation coefficients
Female
Field strength
Flow mapping
Heart valves
Heart Valves - diagnostic imaging
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging, Three-Dimensional - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging, Cine - methods
Male
Mean
Median (statistics)
net flow volume
Population studies
postprocessing analysis time
Rank tests
Regurgitation
regurgitation fraction
Reproducibility of Results
Retrospective Studies
Segmentation
Statistical analysis
Statistical methods
Statistical tests
Tracking
Velocity
Workflow
Young Adult
title Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Valve%20Segmentation%20for%20Blood%20Flow%20Assessment%20From%204D%20Flow%20MRI%20Including%20Automated%20Cardiac%20Valve%20Tracking%20and%20Transvalvular%20Velocity%20Mapping&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Braekt,%20Thomas&rft.date=2025-01&rft.volume=61&rft.issue=1&rft.spage=198&rft.epage=208&rft.pages=198-208&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.29370&rft_dat=%3Cproquest_pubme%3E3031133423%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144208590&rft_id=info:pmid/38558490&rfr_iscdi=true