Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles
To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The e...
Gespeichert in:
Veröffentlicht in: | Polymers 2024-11, Vol.16 (23), p.3291 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 3291 |
container_title | Polymers |
container_volume | 16 |
creator | Meng, Fanfan Li, Xiaopeng Zhang, Min Zhao, Yue Li, Zenghe Zhang, Shouxin Li, Heguo |
description | To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The experiments and theoretical calculations both illustrated that CNFs effectively prevented GNs from aggregating due to the strong Van der Walls interactions between CNFs and GNs. The morphologies and structures of MPCMs with and without GNs were characterized by SEM, FTIR and XRD. The thermal properties of MPCMs were evaluated by DSC, TG, and a thermal conductivity test. The MPCMs with 10 wt.% GNs exhibited a melting enthalpy as high as 187.2 J/g and a thermal conductivity as high as 1.214 (W/m⋅K). The results indicate that the prepared MPCMs possessed a good thermal stability. In addition, MPCMs-GNs exhibited outstanding mechanical properties using a nano-indentation test. With an excellent melting enthalpy and thermal conductivity, the prepared MPCMs-GNs/textile showed a potential ability to be used for comfort thermal regulation. |
doi_str_mv | 10.3390/polym16233291 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11644346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819954191</galeid><sourcerecordid>A819954191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2176-985d98e64c4945c35613c742d2d26755bbec4878a57904a25279cc956f9039c43</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXpkSuyxIUDKXH8kfiEVqEUpFZUaHu2vM4kceXYwU4q9g_xO3G0ZdXiOdgaP_OOZzxZ9hYXF4SI4tPk7X7EvCSkFPhFdloWFckp4cXLJ-eT7DzG-yItyjjH1evshAhe04Lw0-zPbYBJBTUb75Dv0HaAMCqLGu_aRc_mwcz7_NINymloP6Ibo4MHp9UUF6tmaNHtoCKgJgE9oJvkCkbZiO6icT1qwNrF-gj5JkYTV_4qqGkAB-iLiROEuObtfDgm_gn9qry6jUNb-D0bC_FN9qpLsnD-uJ9ld18vt823_PrH1fdmc53rElc8FzVrRQ2caioo04RxTHRFyzYZrxjb7UDTuqoVq0RBVcnKSmgtGO9EQYSm5Cz7fNCdlt0IrQY3B2XlFMyowl56ZeTzG2cG2fsHiTGnlFCeFD48KgT_a4E4y9FEnfqgHPglSoIpFzixRULf_4fe-yW4VN9K0RWidaIuDlSvLEjjOp8S62QtjEZ7B11qkNzUWAhGscApID8EpK-KMUB3fD4u5Do28tnYJP7d05qP9L8hIX8BsrvAwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144144348</pqid></control><display><type>article</type><title>Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Meng, Fanfan ; Li, Xiaopeng ; Zhang, Min ; Zhao, Yue ; Li, Zenghe ; Zhang, Shouxin ; Li, Heguo</creator><creatorcontrib>Meng, Fanfan ; Li, Xiaopeng ; Zhang, Min ; Zhao, Yue ; Li, Zenghe ; Zhang, Shouxin ; Li, Heguo</creatorcontrib><description>To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The experiments and theoretical calculations both illustrated that CNFs effectively prevented GNs from aggregating due to the strong Van der Walls interactions between CNFs and GNs. The morphologies and structures of MPCMs with and without GNs were characterized by SEM, FTIR and XRD. The thermal properties of MPCMs were evaluated by DSC, TG, and a thermal conductivity test. The MPCMs with 10 wt.% GNs exhibited a melting enthalpy as high as 187.2 J/g and a thermal conductivity as high as 1.214 (W/m⋅K). The results indicate that the prepared MPCMs possessed a good thermal stability. In addition, MPCMs-GNs exhibited outstanding mechanical properties using a nano-indentation test. With an excellent melting enthalpy and thermal conductivity, the prepared MPCMs-GNs/textile showed a potential ability to be used for comfort thermal regulation.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16233291</identifier><identifier>PMID: 39684036</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aqueous solutions ; Carbon ; Cellulose ; Cellulose fibers ; Conductivity ; Emulsion polymerization ; Energy ; Enthalpy ; Graphene ; Graphite ; Hardness tests ; Heat conductivity ; Heat transfer ; Mechanical properties ; Morphology ; Nanoindentation ; Phase change materials ; Phase transitions ; Product development ; Reagents ; Textile industry ; Textiles ; Thermal conductivity ; Thermal properties ; Thermal stability ; Thermodynamic properties</subject><ispartof>Polymers, 2024-11, Vol.16 (23), p.3291</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2176-985d98e64c4945c35613c742d2d26755bbec4878a57904a25279cc956f9039c43</cites><orcidid>0000-0001-7829-4975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644346/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644346/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39684036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Fanfan</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Li, Zenghe</creatorcontrib><creatorcontrib>Zhang, Shouxin</creatorcontrib><creatorcontrib>Li, Heguo</creatorcontrib><title>Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The experiments and theoretical calculations both illustrated that CNFs effectively prevented GNs from aggregating due to the strong Van der Walls interactions between CNFs and GNs. The morphologies and structures of MPCMs with and without GNs were characterized by SEM, FTIR and XRD. The thermal properties of MPCMs were evaluated by DSC, TG, and a thermal conductivity test. The MPCMs with 10 wt.% GNs exhibited a melting enthalpy as high as 187.2 J/g and a thermal conductivity as high as 1.214 (W/m⋅K). The results indicate that the prepared MPCMs possessed a good thermal stability. In addition, MPCMs-GNs exhibited outstanding mechanical properties using a nano-indentation test. With an excellent melting enthalpy and thermal conductivity, the prepared MPCMs-GNs/textile showed a potential ability to be used for comfort thermal regulation.</description><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Conductivity</subject><subject>Emulsion polymerization</subject><subject>Energy</subject><subject>Enthalpy</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hardness tests</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoindentation</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Product development</subject><subject>Reagents</subject><subject>Textile industry</subject><subject>Textiles</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkk1v1DAQhiMEolXpkSuyxIUDKXH8kfiEVqEUpFZUaHu2vM4kceXYwU4q9g_xO3G0ZdXiOdgaP_OOZzxZ9hYXF4SI4tPk7X7EvCSkFPhFdloWFckp4cXLJ-eT7DzG-yItyjjH1evshAhe04Lw0-zPbYBJBTUb75Dv0HaAMCqLGu_aRc_mwcz7_NINymloP6Ibo4MHp9UUF6tmaNHtoCKgJgE9oJvkCkbZiO6icT1qwNrF-gj5JkYTV_4qqGkAB-iLiROEuObtfDgm_gn9qry6jUNb-D0bC_FN9qpLsnD-uJ9ld18vt823_PrH1fdmc53rElc8FzVrRQ2caioo04RxTHRFyzYZrxjb7UDTuqoVq0RBVcnKSmgtGO9EQYSm5Cz7fNCdlt0IrQY3B2XlFMyowl56ZeTzG2cG2fsHiTGnlFCeFD48KgT_a4E4y9FEnfqgHPglSoIpFzixRULf_4fe-yW4VN9K0RWidaIuDlSvLEjjOp8S62QtjEZ7B11qkNzUWAhGscApID8EpK-KMUB3fD4u5Do28tnYJP7d05qP9L8hIX8BsrvAwA</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Meng, Fanfan</creator><creator>Li, Xiaopeng</creator><creator>Zhang, Min</creator><creator>Zhao, Yue</creator><creator>Li, Zenghe</creator><creator>Zhang, Shouxin</creator><creator>Li, Heguo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7829-4975</orcidid></search><sort><creationdate>20241126</creationdate><title>Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles</title><author>Meng, Fanfan ; Li, Xiaopeng ; Zhang, Min ; Zhao, Yue ; Li, Zenghe ; Zhang, Shouxin ; Li, Heguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2176-985d98e64c4945c35613c742d2d26755bbec4878a57904a25279cc956f9039c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Conductivity</topic><topic>Emulsion polymerization</topic><topic>Energy</topic><topic>Enthalpy</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hardness tests</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoindentation</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Product development</topic><topic>Reagents</topic><topic>Textile industry</topic><topic>Textiles</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fanfan</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Li, Zenghe</creatorcontrib><creatorcontrib>Zhang, Shouxin</creatorcontrib><creatorcontrib>Li, Heguo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fanfan</au><au>Li, Xiaopeng</au><au>Zhang, Min</au><au>Zhao, Yue</au><au>Li, Zenghe</au><au>Zhang, Shouxin</au><au>Li, Heguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>3291</spage><pages>3291-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The experiments and theoretical calculations both illustrated that CNFs effectively prevented GNs from aggregating due to the strong Van der Walls interactions between CNFs and GNs. The morphologies and structures of MPCMs with and without GNs were characterized by SEM, FTIR and XRD. The thermal properties of MPCMs were evaluated by DSC, TG, and a thermal conductivity test. The MPCMs with 10 wt.% GNs exhibited a melting enthalpy as high as 187.2 J/g and a thermal conductivity as high as 1.214 (W/m⋅K). The results indicate that the prepared MPCMs possessed a good thermal stability. In addition, MPCMs-GNs exhibited outstanding mechanical properties using a nano-indentation test. With an excellent melting enthalpy and thermal conductivity, the prepared MPCMs-GNs/textile showed a potential ability to be used for comfort thermal regulation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39684036</pmid><doi>10.3390/polym16233291</doi><orcidid>https://orcid.org/0000-0001-7829-4975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-11, Vol.16 (23), p.3291 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11644346 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Aqueous solutions Carbon Cellulose Cellulose fibers Conductivity Emulsion polymerization Energy Enthalpy Graphene Graphite Hardness tests Heat conductivity Heat transfer Mechanical properties Morphology Nanoindentation Phase change materials Phase transitions Product development Reagents Textile industry Textiles Thermal conductivity Thermal properties Thermal stability Thermodynamic properties |
title | Preparation of Thermal Conductivity-Enhanced, Microencapsulated Phase Change Materials Using Cellulose-Assisted Graphene Dispersion for Thermal Regulation in Textiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Thermal%20Conductivity-Enhanced,%20Microencapsulated%20Phase%20Change%20Materials%20Using%20Cellulose-Assisted%20Graphene%20Dispersion%20for%20Thermal%20Regulation%20in%20Textiles&rft.jtitle=Polymers&rft.au=Meng,%20Fanfan&rft.date=2024-11-26&rft.volume=16&rft.issue=23&rft.spage=3291&rft.pages=3291-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16233291&rft_dat=%3Cgale_pubme%3EA819954191%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144144348&rft_id=info:pmid/39684036&rft_galeid=A819954191&rfr_iscdi=true |