The Role of Psychological Variables in Predicting Rehabilitation Outcomes After Spinal Cord Injury: An Artificial Neural Networks Study
: Accurate prediction of neurorehabilitation outcomes following Spinal Cord Injury (SCI) is crucial for optimizing healthcare resource allocation and improving rehabilitation strategies. Artificial Neural Networks (ANNs) may identify complex prognostic factors in patients with SCI. However, the infl...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2024-11, Vol.13 (23), p.7114 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 7114 |
container_title | Journal of clinical medicine |
container_volume | 13 |
creator | Mascanzoni, Marta Luciani, Alessia Tamburella, Federica Iosa, Marco Lena, Emanuela Di Fonzo, Sergio Pisani, Valerio Di Lucente, Maria Carmela Caretti, Vincenzo Sideli, Lucia Cuzzocrea, Gaia Scivoletto, Giorgio |
description | : Accurate prediction of neurorehabilitation outcomes following Spinal Cord Injury (SCI) is crucial for optimizing healthcare resource allocation and improving rehabilitation strategies. Artificial Neural Networks (ANNs) may identify complex prognostic factors in patients with SCI. However, the influence of psychological variables on rehabilitation outcomes remains underexplored despite their potential impact on recovery success.
A cohort of 303 patients with SCI was analyzed with an ANN model that employed 17 input variables, structured into two hidden layers and a single output node. Clinical and psychological data were integrated to predict functional outcomes, which were measured by the Spinal Cord Independence Measure (SCIM) at discharge. Paired Wilcoxon tests were used to evaluate pre-post differences and linear regression was used to assess correlations, with Pearson's coefficient and the Root Mean Square Error calculated.
: Significant improvements in SCIM scores were observed (21.8 ± 15.8 at admission vs. 57.4 ± 22.5 at discharge,
< 0.001). The model assigned the highest predictive weight to SCIM at admission (10.3%), while psychological factors accounted for 36.3%, increasing to 40.9% in traumatic SCI cases. Anxiety and depression were the most influential psychological predictors. The correlation between the predicted and actual SCIM scores was R = 0.794 for the entire sample and R = 0.940 for traumatic cases.
: The ANN model demonstrated the strong impact, especially for traumatic SCI, of psychological factors on functional outcomes. Anxiety and depression emerged as dominant negative predictors. Conversely, self-esteem and emotional regulation functioned as protective factors increasing functional outcomes. These findings support the integration of psychological assessments into predictive models to enhance accuracy in SCI rehabilitation outcomes. |
doi_str_mv | 10.3390/jcm13237114 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11642174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819951915</galeid><sourcerecordid>A819951915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2434-29401262f55cf78588351fe68379c43246315ddeefc287b328b66631aeadc4443</originalsourceid><addsrcrecordid>eNptkt9rFDEQxxdRbKl98l0CvghydfNrk_VFlsNqodjSVl9DNju5y7mbXJNd5f6C_tvm2npcxeRhhpnPfDMZpihe4_KE0rr8sDIDpoQKjNmz4pCUQsxKKunzPf-gOE5pVeYjJSNYvCwOaF1JzgU9LO5uloCuQg8oWHSZNmYZ-rBwRvfoh45Otz0k5Dy6jNA5Mzq_QFew1K3r3ahHFzy6mEYThkw1doSIrtfO5-J5iB0686spbj6ixqMmjs4643LqG0zx3oy_Q_yZ0PU4dZtXxQur-wTHj_ao-H76-Wb-dXZ-8eVs3pzPDGGUzUjNSkwqYjk3VkguJeXYQiWpqA2jhFUU864DsIZI0VIi26rKMQ26M4wxelR8etBdT-0AnQE_5mbUOrpBx40K2qmnGe-WahF-KYyr7fC2Cu8eFWK4nSCNanDJQN9rD2FKimJW1VhwIjL69h90FaaYx3NPMVyXdW5uRy10D8p5G_LDZiuqGonrmuMa80yd_IfKt4PBmeDBuhx_UvD-ocDEkFIEu_skLtV2d9Te7mT6zf5cduzfTaF_AK2_ve8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144190966</pqid></control><display><type>article</type><title>The Role of Psychological Variables in Predicting Rehabilitation Outcomes After Spinal Cord Injury: An Artificial Neural Networks Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Mascanzoni, Marta ; Luciani, Alessia ; Tamburella, Federica ; Iosa, Marco ; Lena, Emanuela ; Di Fonzo, Sergio ; Pisani, Valerio ; Di Lucente, Maria Carmela ; Caretti, Vincenzo ; Sideli, Lucia ; Cuzzocrea, Gaia ; Scivoletto, Giorgio</creator><creatorcontrib>Mascanzoni, Marta ; Luciani, Alessia ; Tamburella, Federica ; Iosa, Marco ; Lena, Emanuela ; Di Fonzo, Sergio ; Pisani, Valerio ; Di Lucente, Maria Carmela ; Caretti, Vincenzo ; Sideli, Lucia ; Cuzzocrea, Gaia ; Scivoletto, Giorgio</creatorcontrib><description>: Accurate prediction of neurorehabilitation outcomes following Spinal Cord Injury (SCI) is crucial for optimizing healthcare resource allocation and improving rehabilitation strategies. Artificial Neural Networks (ANNs) may identify complex prognostic factors in patients with SCI. However, the influence of psychological variables on rehabilitation outcomes remains underexplored despite their potential impact on recovery success.
A cohort of 303 patients with SCI was analyzed with an ANN model that employed 17 input variables, structured into two hidden layers and a single output node. Clinical and psychological data were integrated to predict functional outcomes, which were measured by the Spinal Cord Independence Measure (SCIM) at discharge. Paired Wilcoxon tests were used to evaluate pre-post differences and linear regression was used to assess correlations, with Pearson's coefficient and the Root Mean Square Error calculated.
: Significant improvements in SCIM scores were observed (21.8 ± 15.8 at admission vs. 57.4 ± 22.5 at discharge,
< 0.001). The model assigned the highest predictive weight to SCIM at admission (10.3%), while psychological factors accounted for 36.3%, increasing to 40.9% in traumatic SCI cases. Anxiety and depression were the most influential psychological predictors. The correlation between the predicted and actual SCIM scores was R = 0.794 for the entire sample and R = 0.940 for traumatic cases.
: The ANN model demonstrated the strong impact, especially for traumatic SCI, of psychological factors on functional outcomes. Anxiety and depression emerged as dominant negative predictors. Conversely, self-esteem and emotional regulation functioned as protective factors increasing functional outcomes. These findings support the integration of psychological assessments into predictive models to enhance accuracy in SCI rehabilitation outcomes.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm13237114</identifier><identifier>PMID: 39685573</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alexithymia ; Analysis ; Anxiety ; Care and treatment ; Complications and side effects ; Emotions ; Health care reform ; Medical care, Cost of ; Mental depression ; Mental disorders ; Mental health ; Neural networks ; Older people ; Prognosis ; Psychological aspects ; Questionnaires ; Rehabilitation ; Self esteem ; Spinal cord injuries ; Stress ; Variables</subject><ispartof>Journal of clinical medicine, 2024-11, Vol.13 (23), p.7114</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2434-29401262f55cf78588351fe68379c43246315ddeefc287b328b66631aeadc4443</cites><orcidid>0009-0007-7550-1132 ; 0000-0002-5058-7888 ; 0009-0005-9112-1186 ; 0000-0003-1570-3502 ; 0000-0003-2434-3887 ; 0009-0005-1625-9011 ; 0009-0005-1809-7386 ; 0009-0008-7930-7246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39685573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mascanzoni, Marta</creatorcontrib><creatorcontrib>Luciani, Alessia</creatorcontrib><creatorcontrib>Tamburella, Federica</creatorcontrib><creatorcontrib>Iosa, Marco</creatorcontrib><creatorcontrib>Lena, Emanuela</creatorcontrib><creatorcontrib>Di Fonzo, Sergio</creatorcontrib><creatorcontrib>Pisani, Valerio</creatorcontrib><creatorcontrib>Di Lucente, Maria Carmela</creatorcontrib><creatorcontrib>Caretti, Vincenzo</creatorcontrib><creatorcontrib>Sideli, Lucia</creatorcontrib><creatorcontrib>Cuzzocrea, Gaia</creatorcontrib><creatorcontrib>Scivoletto, Giorgio</creatorcontrib><title>The Role of Psychological Variables in Predicting Rehabilitation Outcomes After Spinal Cord Injury: An Artificial Neural Networks Study</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>: Accurate prediction of neurorehabilitation outcomes following Spinal Cord Injury (SCI) is crucial for optimizing healthcare resource allocation and improving rehabilitation strategies. Artificial Neural Networks (ANNs) may identify complex prognostic factors in patients with SCI. However, the influence of psychological variables on rehabilitation outcomes remains underexplored despite their potential impact on recovery success.
A cohort of 303 patients with SCI was analyzed with an ANN model that employed 17 input variables, structured into two hidden layers and a single output node. Clinical and psychological data were integrated to predict functional outcomes, which were measured by the Spinal Cord Independence Measure (SCIM) at discharge. Paired Wilcoxon tests were used to evaluate pre-post differences and linear regression was used to assess correlations, with Pearson's coefficient and the Root Mean Square Error calculated.
: Significant improvements in SCIM scores were observed (21.8 ± 15.8 at admission vs. 57.4 ± 22.5 at discharge,
< 0.001). The model assigned the highest predictive weight to SCIM at admission (10.3%), while psychological factors accounted for 36.3%, increasing to 40.9% in traumatic SCI cases. Anxiety and depression were the most influential psychological predictors. The correlation between the predicted and actual SCIM scores was R = 0.794 for the entire sample and R = 0.940 for traumatic cases.
: The ANN model demonstrated the strong impact, especially for traumatic SCI, of psychological factors on functional outcomes. Anxiety and depression emerged as dominant negative predictors. Conversely, self-esteem and emotional regulation functioned as protective factors increasing functional outcomes. These findings support the integration of psychological assessments into predictive models to enhance accuracy in SCI rehabilitation outcomes.</description><subject>Alexithymia</subject><subject>Analysis</subject><subject>Anxiety</subject><subject>Care and treatment</subject><subject>Complications and side effects</subject><subject>Emotions</subject><subject>Health care reform</subject><subject>Medical care, Cost of</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Neural networks</subject><subject>Older people</subject><subject>Prognosis</subject><subject>Psychological aspects</subject><subject>Questionnaires</subject><subject>Rehabilitation</subject><subject>Self esteem</subject><subject>Spinal cord injuries</subject><subject>Stress</subject><subject>Variables</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkt9rFDEQxxdRbKl98l0CvghydfNrk_VFlsNqodjSVl9DNju5y7mbXJNd5f6C_tvm2npcxeRhhpnPfDMZpihe4_KE0rr8sDIDpoQKjNmz4pCUQsxKKunzPf-gOE5pVeYjJSNYvCwOaF1JzgU9LO5uloCuQg8oWHSZNmYZ-rBwRvfoh45Otz0k5Dy6jNA5Mzq_QFew1K3r3ahHFzy6mEYThkw1doSIrtfO5-J5iB0686spbj6ixqMmjs4643LqG0zx3oy_Q_yZ0PU4dZtXxQur-wTHj_ao-H76-Wb-dXZ-8eVs3pzPDGGUzUjNSkwqYjk3VkguJeXYQiWpqA2jhFUU864DsIZI0VIi26rKMQ26M4wxelR8etBdT-0AnQE_5mbUOrpBx40K2qmnGe-WahF-KYyr7fC2Cu8eFWK4nSCNanDJQN9rD2FKimJW1VhwIjL69h90FaaYx3NPMVyXdW5uRy10D8p5G_LDZiuqGonrmuMa80yd_IfKt4PBmeDBuhx_UvD-ocDEkFIEu_skLtV2d9Te7mT6zf5cduzfTaF_AK2_ve8</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Mascanzoni, Marta</creator><creator>Luciani, Alessia</creator><creator>Tamburella, Federica</creator><creator>Iosa, Marco</creator><creator>Lena, Emanuela</creator><creator>Di Fonzo, Sergio</creator><creator>Pisani, Valerio</creator><creator>Di Lucente, Maria Carmela</creator><creator>Caretti, Vincenzo</creator><creator>Sideli, Lucia</creator><creator>Cuzzocrea, Gaia</creator><creator>Scivoletto, Giorgio</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-7550-1132</orcidid><orcidid>https://orcid.org/0000-0002-5058-7888</orcidid><orcidid>https://orcid.org/0009-0005-9112-1186</orcidid><orcidid>https://orcid.org/0000-0003-1570-3502</orcidid><orcidid>https://orcid.org/0000-0003-2434-3887</orcidid><orcidid>https://orcid.org/0009-0005-1625-9011</orcidid><orcidid>https://orcid.org/0009-0005-1809-7386</orcidid><orcidid>https://orcid.org/0009-0008-7930-7246</orcidid></search><sort><creationdate>20241125</creationdate><title>The Role of Psychological Variables in Predicting Rehabilitation Outcomes After Spinal Cord Injury: An Artificial Neural Networks Study</title><author>Mascanzoni, Marta ; Luciani, Alessia ; Tamburella, Federica ; Iosa, Marco ; Lena, Emanuela ; Di Fonzo, Sergio ; Pisani, Valerio ; Di Lucente, Maria Carmela ; Caretti, Vincenzo ; Sideli, Lucia ; Cuzzocrea, Gaia ; Scivoletto, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2434-29401262f55cf78588351fe68379c43246315ddeefc287b328b66631aeadc4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alexithymia</topic><topic>Analysis</topic><topic>Anxiety</topic><topic>Care and treatment</topic><topic>Complications and side effects</topic><topic>Emotions</topic><topic>Health care reform</topic><topic>Medical care, Cost of</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Neural networks</topic><topic>Older people</topic><topic>Prognosis</topic><topic>Psychological aspects</topic><topic>Questionnaires</topic><topic>Rehabilitation</topic><topic>Self esteem</topic><topic>Spinal cord injuries</topic><topic>Stress</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mascanzoni, Marta</creatorcontrib><creatorcontrib>Luciani, Alessia</creatorcontrib><creatorcontrib>Tamburella, Federica</creatorcontrib><creatorcontrib>Iosa, Marco</creatorcontrib><creatorcontrib>Lena, Emanuela</creatorcontrib><creatorcontrib>Di Fonzo, Sergio</creatorcontrib><creatorcontrib>Pisani, Valerio</creatorcontrib><creatorcontrib>Di Lucente, Maria Carmela</creatorcontrib><creatorcontrib>Caretti, Vincenzo</creatorcontrib><creatorcontrib>Sideli, Lucia</creatorcontrib><creatorcontrib>Cuzzocrea, Gaia</creatorcontrib><creatorcontrib>Scivoletto, Giorgio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mascanzoni, Marta</au><au>Luciani, Alessia</au><au>Tamburella, Federica</au><au>Iosa, Marco</au><au>Lena, Emanuela</au><au>Di Fonzo, Sergio</au><au>Pisani, Valerio</au><au>Di Lucente, Maria Carmela</au><au>Caretti, Vincenzo</au><au>Sideli, Lucia</au><au>Cuzzocrea, Gaia</au><au>Scivoletto, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Psychological Variables in Predicting Rehabilitation Outcomes After Spinal Cord Injury: An Artificial Neural Networks Study</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>7114</spage><pages>7114-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>: Accurate prediction of neurorehabilitation outcomes following Spinal Cord Injury (SCI) is crucial for optimizing healthcare resource allocation and improving rehabilitation strategies. Artificial Neural Networks (ANNs) may identify complex prognostic factors in patients with SCI. However, the influence of psychological variables on rehabilitation outcomes remains underexplored despite their potential impact on recovery success.
A cohort of 303 patients with SCI was analyzed with an ANN model that employed 17 input variables, structured into two hidden layers and a single output node. Clinical and psychological data were integrated to predict functional outcomes, which were measured by the Spinal Cord Independence Measure (SCIM) at discharge. Paired Wilcoxon tests were used to evaluate pre-post differences and linear regression was used to assess correlations, with Pearson's coefficient and the Root Mean Square Error calculated.
: Significant improvements in SCIM scores were observed (21.8 ± 15.8 at admission vs. 57.4 ± 22.5 at discharge,
< 0.001). The model assigned the highest predictive weight to SCIM at admission (10.3%), while psychological factors accounted for 36.3%, increasing to 40.9% in traumatic SCI cases. Anxiety and depression were the most influential psychological predictors. The correlation between the predicted and actual SCIM scores was R = 0.794 for the entire sample and R = 0.940 for traumatic cases.
: The ANN model demonstrated the strong impact, especially for traumatic SCI, of psychological factors on functional outcomes. Anxiety and depression emerged as dominant negative predictors. Conversely, self-esteem and emotional regulation functioned as protective factors increasing functional outcomes. These findings support the integration of psychological assessments into predictive models to enhance accuracy in SCI rehabilitation outcomes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39685573</pmid><doi>10.3390/jcm13237114</doi><orcidid>https://orcid.org/0009-0007-7550-1132</orcidid><orcidid>https://orcid.org/0000-0002-5058-7888</orcidid><orcidid>https://orcid.org/0009-0005-9112-1186</orcidid><orcidid>https://orcid.org/0000-0003-1570-3502</orcidid><orcidid>https://orcid.org/0000-0003-2434-3887</orcidid><orcidid>https://orcid.org/0009-0005-1625-9011</orcidid><orcidid>https://orcid.org/0009-0005-1809-7386</orcidid><orcidid>https://orcid.org/0009-0008-7930-7246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2024-11, Vol.13 (23), p.7114 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11642174 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Alexithymia Analysis Anxiety Care and treatment Complications and side effects Emotions Health care reform Medical care, Cost of Mental depression Mental disorders Mental health Neural networks Older people Prognosis Psychological aspects Questionnaires Rehabilitation Self esteem Spinal cord injuries Stress Variables |
title | The Role of Psychological Variables in Predicting Rehabilitation Outcomes After Spinal Cord Injury: An Artificial Neural Networks Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Psychological%20Variables%20in%20Predicting%20Rehabilitation%20Outcomes%20After%20Spinal%20Cord%20Injury:%20An%20Artificial%20Neural%20Networks%20Study&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Mascanzoni,%20Marta&rft.date=2024-11-25&rft.volume=13&rft.issue=23&rft.spage=7114&rft.pages=7114-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm13237114&rft_dat=%3Cgale_pubme%3EA819951915%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144190966&rft_id=info:pmid/39685573&rft_galeid=A819951915&rfr_iscdi=true |