Embedded CPU-GPU pupil tracking

We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2024-12, Vol.15 (12), p.6799-6815
Hauptverfasser: Kowalski, Bartlomiej, Huang, Xiaojing, Dubra, Alfredo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6815
container_issue 12
container_start_page 6799
container_title Biomedical optics express
container_volume 15
creator Kowalski, Bartlomiej
Huang, Xiaojing
Dubra, Alfredo
description We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowalski et al., [Biomed. Opt. Express12, 6496 (2021)10.1364/BOE.433766]. Various desktop and embedded computers were tested, some with two operating systems, using the traditional sequential pupil tracking paradigm, in which the processing of the camera image only starts after it is fully downloaded to the computer. The pupil tracking was demonstrated using two Scheimpflug optical setups, telecentric in both image and object spaces, with different optical magnifications and nominal diffraction-limited performance over an ∼18 mm full field of view illuminated with 940 nm light. Eye images from subjects with different iris and skin pigmentation captured at this wavelength suggest that the proposed pupil tracking does not suffer from ethnic bias. The optical axis of the setups is tilted at 45° to facilitate integration with other instruments without the need for beam splitting. Tracking with ∼0.9-4.4 µm precision and safe light levels was demonstrated using two complementary metal-oxide-semiconductor cameras with global shutter, operating at 438 and 1,045 fps with an ∼500 × 420 pixel region of interest (ROI), and at 633 and 1,897 fps with ∼315 × 280 pixel ROI. For these image sizes, the desktop computers achieved calculation times as low as 0.5 ms, while low-cost embedded computers delivered calculation times in the 0.8-1.3 ms range.
doi_str_mv 10.1364/BOE.541421
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11640584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146852029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1831-5224a2bf7111cf1670ecadd41263cfe3ea72713a5760c8d686a08ae117e75bf13</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbKm9-AO0RxFSd_a7J9FSq1BoD_a8bDaTGs2X2Ubw3xtpLXUuMzAP7wwPIZdAx8CVuHtczsZSgGBwQvoMpIo0NfL0aO6RYQjvtCshNOXmnPT4ROmJoLpPrmdFjEmCyWi6Wkfz1XpUt3WWj7aN8x9ZubkgZ6nLAw73fUDWT7PX6XO0WM5fpg-LyIPhEEnGhGNxqgHAp6A0Re-SRABT3KfI0WmmgTupFfUmUUY5ahwCaNQyToEPyP0ut27jAhOPZfdBbusmK1zzbSuX2f-bMnuzm-rLAihBpRFdws0-oak-WwxbW2TBY567Eqs2WA5CGckom3To7Q71TRVCg-nhDlD7a9V2Vu3OagdfHX92QP8c8h-1MG-d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146852029</pqid></control><display><type>article</type><title>Embedded CPU-GPU pupil tracking</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kowalski, Bartlomiej ; Huang, Xiaojing ; Dubra, Alfredo</creator><creatorcontrib>Kowalski, Bartlomiej ; Huang, Xiaojing ; Dubra, Alfredo</creatorcontrib><description>We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowalski et al., [Biomed. Opt. Express12, 6496 (2021)10.1364/BOE.433766]. Various desktop and embedded computers were tested, some with two operating systems, using the traditional sequential pupil tracking paradigm, in which the processing of the camera image only starts after it is fully downloaded to the computer. The pupil tracking was demonstrated using two Scheimpflug optical setups, telecentric in both image and object spaces, with different optical magnifications and nominal diffraction-limited performance over an ∼18 mm full field of view illuminated with 940 nm light. Eye images from subjects with different iris and skin pigmentation captured at this wavelength suggest that the proposed pupil tracking does not suffer from ethnic bias. The optical axis of the setups is tilted at 45° to facilitate integration with other instruments without the need for beam splitting. Tracking with ∼0.9-4.4 µm precision and safe light levels was demonstrated using two complementary metal-oxide-semiconductor cameras with global shutter, operating at 438 and 1,045 fps with an ∼500 × 420 pixel region of interest (ROI), and at 633 and 1,897 fps with ∼315 × 280 pixel ROI. For these image sizes, the desktop computers achieved calculation times as low as 0.5 ms, while low-cost embedded computers delivered calculation times in the 0.8-1.3 ms range.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.541421</identifier><identifier>PMID: 39679407</identifier><language>eng</language><publisher>United States: Optica Publishing Group</publisher><ispartof>Biomedical optics express, 2024-12, Vol.15 (12), p.6799-6815</ispartof><rights>2024 Optica Publishing Group.</rights><rights>2024 Optica Publishing Group 2024 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1831-5224a2bf7111cf1670ecadd41263cfe3ea72713a5760c8d686a08ae117e75bf13</cites><orcidid>0000-0002-6506-9020 ; 0000-0003-4789-6724 ; 0000-0001-5150-985X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640584/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640584/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39679407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalski, Bartlomiej</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Dubra, Alfredo</creatorcontrib><title>Embedded CPU-GPU pupil tracking</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowalski et al., [Biomed. Opt. Express12, 6496 (2021)10.1364/BOE.433766]. Various desktop and embedded computers were tested, some with two operating systems, using the traditional sequential pupil tracking paradigm, in which the processing of the camera image only starts after it is fully downloaded to the computer. The pupil tracking was demonstrated using two Scheimpflug optical setups, telecentric in both image and object spaces, with different optical magnifications and nominal diffraction-limited performance over an ∼18 mm full field of view illuminated with 940 nm light. Eye images from subjects with different iris and skin pigmentation captured at this wavelength suggest that the proposed pupil tracking does not suffer from ethnic bias. The optical axis of the setups is tilted at 45° to facilitate integration with other instruments without the need for beam splitting. Tracking with ∼0.9-4.4 µm precision and safe light levels was demonstrated using two complementary metal-oxide-semiconductor cameras with global shutter, operating at 438 and 1,045 fps with an ∼500 × 420 pixel region of interest (ROI), and at 633 and 1,897 fps with ∼315 × 280 pixel ROI. For these image sizes, the desktop computers achieved calculation times as low as 0.5 ms, while low-cost embedded computers delivered calculation times in the 0.8-1.3 ms range.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRbKm9-AO0RxFSd_a7J9FSq1BoD_a8bDaTGs2X2Ubw3xtpLXUuMzAP7wwPIZdAx8CVuHtczsZSgGBwQvoMpIo0NfL0aO6RYQjvtCshNOXmnPT4ROmJoLpPrmdFjEmCyWi6Wkfz1XpUt3WWj7aN8x9ZubkgZ6nLAw73fUDWT7PX6XO0WM5fpg-LyIPhEEnGhGNxqgHAp6A0Re-SRABT3KfI0WmmgTupFfUmUUY5ahwCaNQyToEPyP0ut27jAhOPZfdBbusmK1zzbSuX2f-bMnuzm-rLAihBpRFdws0-oak-WwxbW2TBY567Eqs2WA5CGckom3To7Q71TRVCg-nhDlD7a9V2Vu3OagdfHX92QP8c8h-1MG-d</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Kowalski, Bartlomiej</creator><creator>Huang, Xiaojing</creator><creator>Dubra, Alfredo</creator><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6506-9020</orcidid><orcidid>https://orcid.org/0000-0003-4789-6724</orcidid><orcidid>https://orcid.org/0000-0001-5150-985X</orcidid></search><sort><creationdate>20241201</creationdate><title>Embedded CPU-GPU pupil tracking</title><author>Kowalski, Bartlomiej ; Huang, Xiaojing ; Dubra, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1831-5224a2bf7111cf1670ecadd41263cfe3ea72713a5760c8d686a08ae117e75bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Bartlomiej</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Dubra, Alfredo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Bartlomiej</au><au>Huang, Xiaojing</au><au>Dubra, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded CPU-GPU pupil tracking</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>6799</spage><epage>6815</epage><pages>6799-6815</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowalski et al., [Biomed. Opt. Express12, 6496 (2021)10.1364/BOE.433766]. Various desktop and embedded computers were tested, some with two operating systems, using the traditional sequential pupil tracking paradigm, in which the processing of the camera image only starts after it is fully downloaded to the computer. The pupil tracking was demonstrated using two Scheimpflug optical setups, telecentric in both image and object spaces, with different optical magnifications and nominal diffraction-limited performance over an ∼18 mm full field of view illuminated with 940 nm light. Eye images from subjects with different iris and skin pigmentation captured at this wavelength suggest that the proposed pupil tracking does not suffer from ethnic bias. The optical axis of the setups is tilted at 45° to facilitate integration with other instruments without the need for beam splitting. Tracking with ∼0.9-4.4 µm precision and safe light levels was demonstrated using two complementary metal-oxide-semiconductor cameras with global shutter, operating at 438 and 1,045 fps with an ∼500 × 420 pixel region of interest (ROI), and at 633 and 1,897 fps with ∼315 × 280 pixel ROI. For these image sizes, the desktop computers achieved calculation times as low as 0.5 ms, while low-cost embedded computers delivered calculation times in the 0.8-1.3 ms range.</abstract><cop>United States</cop><pub>Optica Publishing Group</pub><pmid>39679407</pmid><doi>10.1364/BOE.541421</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6506-9020</orcidid><orcidid>https://orcid.org/0000-0003-4789-6724</orcidid><orcidid>https://orcid.org/0000-0001-5150-985X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2024-12, Vol.15 (12), p.6799-6815
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11640584
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Embedded CPU-GPU pupil tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20CPU-GPU%20pupil%20tracking&rft.jtitle=Biomedical%20optics%20express&rft.au=Kowalski,%20Bartlomiej&rft.date=2024-12-01&rft.volume=15&rft.issue=12&rft.spage=6799&rft.epage=6815&rft.pages=6799-6815&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.541421&rft_dat=%3Cproquest_pubme%3E3146852029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146852029&rft_id=info:pmid/39679407&rfr_iscdi=true