Few-shot classification of Cryo-ET subvolumes with deep Brownian distance covariance

Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods for macromolecules in Cryo-ET consider o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2024-11, Vol.26 (1)
Hauptverfasser: Yu, Xueshi, Han, Renmin, Jiao, Haitao, Meng, Wenjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Briefings in bioinformatics
container_volume 26
creator Yu, Xueshi
Han, Renmin
Jiao, Haitao
Meng, Wenjia
description Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods for macromolecules in Cryo-ET consider only marginal distributions and overlook joint distributions, failing to capture feature dependencies fully. To address this issue, we propose a method for macromolecular few-shot classification using deep Brownian Distance Covariance (BDC). Our method models the joint distribution within a transfer learning framework, enhancing the modeling capabilities. We insert the BDC module after the feature extractor and only train the feature extractor during the training phase. Then, we enhance the model's generalization capability with self-distillation techniques. In the adaptation phase, we fine-tune the classifier with minimal labeled data. We conduct experiments on publicly available SHREC datasets and a small-scale synthetic dataset to evaluate our method. Results show that our method improves the classification capabilities by introducing the joint distribution.
doi_str_mv 10.1093/bib/bbae643
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11637689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146664267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3775e3530acfd29a5543176de9a5c998f3705ab8ad31aee4cb67881229251c073</originalsourceid><addsrcrecordid>eNpVUUFLwzAYDaK4OT15lxwFqUuaNGlPomNTYeBlnkOafnWRtplJu7F_b8um6Ol78D3ee7yH0DUl95RkbJrbfJrnGgRnJ2hMuZQRJwk_HbCQUcIFG6GLED4JiYlM6TkasUyIlDExRqsF7KKwdi02lQ7Bltbo1roGuxLP_N5F8xUOXb51VVdDwDvbrnEBsMFP3u0aqxtc2NDqxgA2bqu9HeAlOit1FeDqeCfofTFfzV6i5dvz6-xxGZlYkjZiUibAEka0KYs400nCGZWigB6aLEtLJkmi81QXjGoAbnIh05TGcRYn1BDJJujhoLvp8hoKA03rdaU23tba75XTVv3_NHatPtxWUSqYFGnWK9weFbz76iC0qrbBQFXpBlwXFOsrFILHYjC7O1CNdyF4KH99KFHDEKofQh2H6Nk3f6P9cn-aZ99qWIZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146664267</pqid></control><display><type>article</type><title>Few-shot classification of Cryo-ET subvolumes with deep Brownian distance covariance</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Yu, Xueshi ; Han, Renmin ; Jiao, Haitao ; Meng, Wenjia</creator><creatorcontrib>Yu, Xueshi ; Han, Renmin ; Jiao, Haitao ; Meng, Wenjia</creatorcontrib><description>Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods for macromolecules in Cryo-ET consider only marginal distributions and overlook joint distributions, failing to capture feature dependencies fully. To address this issue, we propose a method for macromolecular few-shot classification using deep Brownian Distance Covariance (BDC). Our method models the joint distribution within a transfer learning framework, enhancing the modeling capabilities. We insert the BDC module after the feature extractor and only train the feature extractor during the training phase. Then, we enhance the model's generalization capability with self-distillation techniques. In the adaptation phase, we fine-tune the classifier with minimal labeled data. We conduct experiments on publicly available SHREC datasets and a small-scale synthetic dataset to evaluate our method. Results show that our method improves the classification capabilities by introducing the joint distribution.</description><identifier>ISSN: 1467-5463</identifier><identifier>ISSN: 1477-4054</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae643</identifier><identifier>PMID: 39668336</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Cryoelectron Microscopy - methods ; Deep Learning ; Electron Microscope Tomography - methods ; Macromolecular Substances - chemistry ; Problem Solving Protocol</subject><ispartof>Briefings in bioinformatics, 2024-11, Vol.26 (1)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><rights>The Author(s) 2024. Published by Oxford University Press. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3775e3530acfd29a5543176de9a5c998f3705ab8ad31aee4cb67881229251c073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637689/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637689/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39668336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Xueshi</creatorcontrib><creatorcontrib>Han, Renmin</creatorcontrib><creatorcontrib>Jiao, Haitao</creatorcontrib><creatorcontrib>Meng, Wenjia</creatorcontrib><title>Few-shot classification of Cryo-ET subvolumes with deep Brownian distance covariance</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods for macromolecules in Cryo-ET consider only marginal distributions and overlook joint distributions, failing to capture feature dependencies fully. To address this issue, we propose a method for macromolecular few-shot classification using deep Brownian Distance Covariance (BDC). Our method models the joint distribution within a transfer learning framework, enhancing the modeling capabilities. We insert the BDC module after the feature extractor and only train the feature extractor during the training phase. Then, we enhance the model's generalization capability with self-distillation techniques. In the adaptation phase, we fine-tune the classifier with minimal labeled data. We conduct experiments on publicly available SHREC datasets and a small-scale synthetic dataset to evaluate our method. Results show that our method improves the classification capabilities by introducing the joint distribution.</description><subject>Algorithms</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Deep Learning</subject><subject>Electron Microscope Tomography - methods</subject><subject>Macromolecular Substances - chemistry</subject><subject>Problem Solving Protocol</subject><issn>1467-5463</issn><issn>1477-4054</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUFLwzAYDaK4OT15lxwFqUuaNGlPomNTYeBlnkOafnWRtplJu7F_b8um6Ol78D3ee7yH0DUl95RkbJrbfJrnGgRnJ2hMuZQRJwk_HbCQUcIFG6GLED4JiYlM6TkasUyIlDExRqsF7KKwdi02lQ7Bltbo1roGuxLP_N5F8xUOXb51VVdDwDvbrnEBsMFP3u0aqxtc2NDqxgA2bqu9HeAlOit1FeDqeCfofTFfzV6i5dvz6-xxGZlYkjZiUibAEka0KYs400nCGZWigB6aLEtLJkmi81QXjGoAbnIh05TGcRYn1BDJJujhoLvp8hoKA03rdaU23tba75XTVv3_NHatPtxWUSqYFGnWK9weFbz76iC0qrbBQFXpBlwXFOsrFILHYjC7O1CNdyF4KH99KFHDEKofQh2H6Nk3f6P9cn-aZ99qWIZQ</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Yu, Xueshi</creator><creator>Han, Renmin</creator><creator>Jiao, Haitao</creator><creator>Meng, Wenjia</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241122</creationdate><title>Few-shot classification of Cryo-ET subvolumes with deep Brownian distance covariance</title><author>Yu, Xueshi ; Han, Renmin ; Jiao, Haitao ; Meng, Wenjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3775e3530acfd29a5543176de9a5c998f3705ab8ad31aee4cb67881229251c073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Deep Learning</topic><topic>Electron Microscope Tomography - methods</topic><topic>Macromolecular Substances - chemistry</topic><topic>Problem Solving Protocol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xueshi</creatorcontrib><creatorcontrib>Han, Renmin</creatorcontrib><creatorcontrib>Jiao, Haitao</creatorcontrib><creatorcontrib>Meng, Wenjia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xueshi</au><au>Han, Renmin</au><au>Jiao, Haitao</au><au>Meng, Wenjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-shot classification of Cryo-ET subvolumes with deep Brownian distance covariance</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><issn>1467-5463</issn><issn>1477-4054</issn><eissn>1477-4054</eissn><abstract>Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods for macromolecules in Cryo-ET consider only marginal distributions and overlook joint distributions, failing to capture feature dependencies fully. To address this issue, we propose a method for macromolecular few-shot classification using deep Brownian Distance Covariance (BDC). Our method models the joint distribution within a transfer learning framework, enhancing the modeling capabilities. We insert the BDC module after the feature extractor and only train the feature extractor during the training phase. Then, we enhance the model's generalization capability with self-distillation techniques. In the adaptation phase, we fine-tune the classifier with minimal labeled data. We conduct experiments on publicly available SHREC datasets and a small-scale synthetic dataset to evaluate our method. Results show that our method improves the classification capabilities by introducing the joint distribution.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39668336</pmid><doi>10.1093/bib/bbae643</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2024-11, Vol.26 (1)
issn 1467-5463
1477-4054
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11637689
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central
subjects Algorithms
Cryoelectron Microscopy - methods
Deep Learning
Electron Microscope Tomography - methods
Macromolecular Substances - chemistry
Problem Solving Protocol
title Few-shot classification of Cryo-ET subvolumes with deep Brownian distance covariance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-shot%20classification%20of%20Cryo-ET%20subvolumes%20with%20deep%20Brownian%20distance%20covariance&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Yu,%20Xueshi&rft.date=2024-11-22&rft.volume=26&rft.issue=1&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae643&rft_dat=%3Cproquest_pubme%3E3146664267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146664267&rft_id=info:pmid/39668336&rfr_iscdi=true