High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer
Wide‐bandgap perovskite solar cells (PSCs) with high open‐circuit voltage (Voc) represent a compelling and emerging technological advancement in high‐performing perovskite‐based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (50), p.e2404784-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | e2404784 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Heo, Jihyeon Prayogo, Juan Anthony Lee, Seok Woo Park, Hansol Muthu, Senthilkumar Hong, JeeHee Kim, Haeun Kim, Young‐Hoon Whang, Dong Ryeol Chang, Dong Wook Park, Hui Joon |
description | Wide‐bandgap perovskite solar cells (PSCs) with high open‐circuit voltage (Voc) represent a compelling and emerging technological advancement in high‐performing perovskite‐based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n‐type quinoxaline‐phosphine oxide‐based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers. Their strong dipole effect leads to appropriate energy level alignment by tuning the work function of the Ag electrode to form an ohmic contact and enhance the built‐in potential within the device, thereby improving charge‐carrier transport and mitigating charge recombination. The organic interfacial layer‐modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V (deficit of |
doi_str_mv | 10.1002/smll.202404784 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11636069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143202641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-dd956bc11a1388b4b002e9ea8dae1206a31e24a6e267a0e3f3090a9be522a6c33</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi0EoqWwZYkssekmwbdxxisEKdBKUxWpXDZI1pmZk8TFGQ_2TKvseASesU9SV2nDZcPKlv35P_71EfKcsylnTLxKa--nggnF1KxUD8g-11xOdCnMw92esz3yJKULxiQXavaY7EkjWFEovU--Hbvlip712F3__DV3sRndQL8EP8AS6VfXYj5-C127hJ5-xBgu03c3ID0PHiKdo_f0yg0retINGBfQID1yffBIK9hgfEoeLcAnfHa3HpDP7999mh9PqrMPJ_M31aSRhVKTtjWFrhvOgcuyrFWdi6FBKFtALpgGyVEo0Cj0DBjKhWSGgamxEAJ0I-UBeb3N7cd6jW2D3RDB2z66NcSNDeDs3zedW9lluLSca6mZNjnh8C4hhh8jpsGuXWpyPegwjMnmiWZmCiN1Rl_-g16EMXa5n5VcyexCK56p6ZZqYkgp4mL3G87srTl7a87uzOUHL_7ssMPvVWXAbIEr53Hznzh7flpVv8NvALNCp5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143202641</pqid></control><display><type>article</type><title>High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heo, Jihyeon ; Prayogo, Juan Anthony ; Lee, Seok Woo ; Park, Hansol ; Muthu, Senthilkumar ; Hong, JeeHee ; Kim, Haeun ; Kim, Young‐Hoon ; Whang, Dong Ryeol ; Chang, Dong Wook ; Park, Hui Joon</creator><creatorcontrib>Heo, Jihyeon ; Prayogo, Juan Anthony ; Lee, Seok Woo ; Park, Hansol ; Muthu, Senthilkumar ; Hong, JeeHee ; Kim, Haeun ; Kim, Young‐Hoon ; Whang, Dong Ryeol ; Chang, Dong Wook ; Park, Hui Joon</creatorcontrib><description>Wide‐bandgap perovskite solar cells (PSCs) with high open‐circuit voltage (Voc) represent a compelling and emerging technological advancement in high‐performing perovskite‐based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n‐type quinoxaline‐phosphine oxide‐based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers. Their strong dipole effect leads to appropriate energy level alignment by tuning the work function of the Ag electrode to form an ohmic contact and enhance the built‐in potential within the device, thereby improving charge‐carrier transport and mitigating charge recombination. The organic interfacial layer‐modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V (deficit of <0.44 V) and a power conversion efficiency (PCE) of 20.3%, significantly improved from the device without an interface dipole layer (Voc of 1.26 V and PCE of 16.7%). Furthermore, the hydrophobic characteristics of the small molecules contribute to improved device stability, retaining 95% of the initial PCE after 500 h in ambient air.
Quinoxaline‐phosphine oxide‐based molecules with strong dipole moments are introduced as cathode interfacial layers of perovskite solar cells (PSCs), enhancing charge‐carrier transport and mitigating charge recombination. The modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V and an efficiency of 20.3%, with superior stability, retaining 95% of initial efficiency after 500 h in air, which demonstrate promise for tandem cells.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404784</identifier><identifier>PMID: 39205546</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Carrier transport ; charge transport ; Contact resistance ; Current carriers ; Dipole moments ; Electric potential ; Energy conversion efficiency ; Energy gap ; Energy levels ; interface dipole layer ; interfacial engineering ; perovskite solar cell ; Perovskites ; Phosphine oxide ; Photovoltaic cells ; Quinoxalines ; Solar cells ; Voltage ; Work functions</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (50), p.e2404784-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3544-dd956bc11a1388b4b002e9ea8dae1206a31e24a6e267a0e3f3090a9be522a6c33</cites><orcidid>0000-0003-4607-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202404784$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202404784$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39205546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Jihyeon</creatorcontrib><creatorcontrib>Prayogo, Juan Anthony</creatorcontrib><creatorcontrib>Lee, Seok Woo</creatorcontrib><creatorcontrib>Park, Hansol</creatorcontrib><creatorcontrib>Muthu, Senthilkumar</creatorcontrib><creatorcontrib>Hong, JeeHee</creatorcontrib><creatorcontrib>Kim, Haeun</creatorcontrib><creatorcontrib>Kim, Young‐Hoon</creatorcontrib><creatorcontrib>Whang, Dong Ryeol</creatorcontrib><creatorcontrib>Chang, Dong Wook</creatorcontrib><creatorcontrib>Park, Hui Joon</creatorcontrib><title>High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Wide‐bandgap perovskite solar cells (PSCs) with high open‐circuit voltage (Voc) represent a compelling and emerging technological advancement in high‐performing perovskite‐based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n‐type quinoxaline‐phosphine oxide‐based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers. Their strong dipole effect leads to appropriate energy level alignment by tuning the work function of the Ag electrode to form an ohmic contact and enhance the built‐in potential within the device, thereby improving charge‐carrier transport and mitigating charge recombination. The organic interfacial layer‐modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V (deficit of <0.44 V) and a power conversion efficiency (PCE) of 20.3%, significantly improved from the device without an interface dipole layer (Voc of 1.26 V and PCE of 16.7%). Furthermore, the hydrophobic characteristics of the small molecules contribute to improved device stability, retaining 95% of the initial PCE after 500 h in ambient air.
Quinoxaline‐phosphine oxide‐based molecules with strong dipole moments are introduced as cathode interfacial layers of perovskite solar cells (PSCs), enhancing charge‐carrier transport and mitigating charge recombination. The modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V and an efficiency of 20.3%, with superior stability, retaining 95% of initial efficiency after 500 h in air, which demonstrate promise for tandem cells.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>charge transport</subject><subject>Contact resistance</subject><subject>Current carriers</subject><subject>Dipole moments</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>interface dipole layer</subject><subject>interfacial engineering</subject><subject>perovskite solar cell</subject><subject>Perovskites</subject><subject>Phosphine oxide</subject><subject>Photovoltaic cells</subject><subject>Quinoxalines</subject><subject>Solar cells</subject><subject>Voltage</subject><subject>Work functions</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctuEzEUhi0EoqWwZYkssekmwbdxxisEKdBKUxWpXDZI1pmZk8TFGQ_2TKvseASesU9SV2nDZcPKlv35P_71EfKcsylnTLxKa--nggnF1KxUD8g-11xOdCnMw92esz3yJKULxiQXavaY7EkjWFEovU--Hbvlip712F3__DV3sRndQL8EP8AS6VfXYj5-C127hJ5-xBgu03c3ID0PHiKdo_f0yg0retINGBfQID1yffBIK9hgfEoeLcAnfHa3HpDP7999mh9PqrMPJ_M31aSRhVKTtjWFrhvOgcuyrFWdi6FBKFtALpgGyVEo0Cj0DBjKhWSGgamxEAJ0I-UBeb3N7cd6jW2D3RDB2z66NcSNDeDs3zedW9lluLSca6mZNjnh8C4hhh8jpsGuXWpyPegwjMnmiWZmCiN1Rl_-g16EMXa5n5VcyexCK56p6ZZqYkgp4mL3G87srTl7a87uzOUHL_7ssMPvVWXAbIEr53Hznzh7flpVv8NvALNCp5U</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Heo, Jihyeon</creator><creator>Prayogo, Juan Anthony</creator><creator>Lee, Seok Woo</creator><creator>Park, Hansol</creator><creator>Muthu, Senthilkumar</creator><creator>Hong, JeeHee</creator><creator>Kim, Haeun</creator><creator>Kim, Young‐Hoon</creator><creator>Whang, Dong Ryeol</creator><creator>Chang, Dong Wook</creator><creator>Park, Hui Joon</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4607-207X</orcidid></search><sort><creationdate>202412</creationdate><title>High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer</title><author>Heo, Jihyeon ; Prayogo, Juan Anthony ; Lee, Seok Woo ; Park, Hansol ; Muthu, Senthilkumar ; Hong, JeeHee ; Kim, Haeun ; Kim, Young‐Hoon ; Whang, Dong Ryeol ; Chang, Dong Wook ; Park, Hui Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-dd956bc11a1388b4b002e9ea8dae1206a31e24a6e267a0e3f3090a9be522a6c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>charge transport</topic><topic>Contact resistance</topic><topic>Current carriers</topic><topic>Dipole moments</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>interface dipole layer</topic><topic>interfacial engineering</topic><topic>perovskite solar cell</topic><topic>Perovskites</topic><topic>Phosphine oxide</topic><topic>Photovoltaic cells</topic><topic>Quinoxalines</topic><topic>Solar cells</topic><topic>Voltage</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Jihyeon</creatorcontrib><creatorcontrib>Prayogo, Juan Anthony</creatorcontrib><creatorcontrib>Lee, Seok Woo</creatorcontrib><creatorcontrib>Park, Hansol</creatorcontrib><creatorcontrib>Muthu, Senthilkumar</creatorcontrib><creatorcontrib>Hong, JeeHee</creatorcontrib><creatorcontrib>Kim, Haeun</creatorcontrib><creatorcontrib>Kim, Young‐Hoon</creatorcontrib><creatorcontrib>Whang, Dong Ryeol</creatorcontrib><creatorcontrib>Chang, Dong Wook</creatorcontrib><creatorcontrib>Park, Hui Joon</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Jihyeon</au><au>Prayogo, Juan Anthony</au><au>Lee, Seok Woo</au><au>Park, Hansol</au><au>Muthu, Senthilkumar</au><au>Hong, JeeHee</au><au>Kim, Haeun</au><au>Kim, Young‐Hoon</au><au>Whang, Dong Ryeol</au><au>Chang, Dong Wook</au><au>Park, Hui Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>50</issue><spage>e2404784</spage><epage>n/a</epage><pages>e2404784-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Wide‐bandgap perovskite solar cells (PSCs) with high open‐circuit voltage (Voc) represent a compelling and emerging technological advancement in high‐performing perovskite‐based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n‐type quinoxaline‐phosphine oxide‐based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers. Their strong dipole effect leads to appropriate energy level alignment by tuning the work function of the Ag electrode to form an ohmic contact and enhance the built‐in potential within the device, thereby improving charge‐carrier transport and mitigating charge recombination. The organic interfacial layer‐modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V (deficit of <0.44 V) and a power conversion efficiency (PCE) of 20.3%, significantly improved from the device without an interface dipole layer (Voc of 1.26 V and PCE of 16.7%). Furthermore, the hydrophobic characteristics of the small molecules contribute to improved device stability, retaining 95% of the initial PCE after 500 h in ambient air.
Quinoxaline‐phosphine oxide‐based molecules with strong dipole moments are introduced as cathode interfacial layers of perovskite solar cells (PSCs), enhancing charge‐carrier transport and mitigating charge recombination. The modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V and an efficiency of 20.3%, with superior stability, retaining 95% of initial efficiency after 500 h in air, which demonstrate promise for tandem cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39205546</pmid><doi>10.1002/smll.202404784</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4607-207X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (50), p.e2404784-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11636069 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carrier recombination Carrier transport charge transport Contact resistance Current carriers Dipole moments Electric potential Energy conversion efficiency Energy gap Energy levels interface dipole layer interfacial engineering perovskite solar cell Perovskites Phosphine oxide Photovoltaic cells Quinoxalines Solar cells Voltage Work functions |
title | High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Open%E2%80%90Circuit%20Voltage%20Wide%E2%80%90Bandgap%20Perovskite%20Solar%20Cell%20with%20Interface%20Dipole%20Layer&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Heo,%20Jihyeon&rft.date=2024-12&rft.volume=20&rft.issue=50&rft.spage=e2404784&rft.epage=n/a&rft.pages=e2404784-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404784&rft_dat=%3Cproquest_pubme%3E3143202641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143202641&rft_id=info:pmid/39205546&rfr_iscdi=true |