DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing,...
Gespeichert in:
Veröffentlicht in: | Gigascience 2024-01, Vol.13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Gigascience |
container_volume | 13 |
creator | Attafi, Omar Abdelghani Clementel, Damiano Kyritsis, Konstantinos Capriotti, Emidio Farrell, Gavin Fragkouli, Styliani-Christina Castro, Leyla Jael Hatos, András Lenaerts, Tom Mazurenko, Stanislav Mozaffari, Soroush Pradelli, Franco Ruch, Patrick Savojardo, Castrense Turina, Paola Zambelli, Federico Piovesan, Damiano Monzon, Alexander Miguel Psomopoulos, Fotis Tosatto, Silvio C E |
description | Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences. |
doi_str_mv | 10.1093/gigascience/giae094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11633452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giae094</oup_id><sourcerecordid>3146651104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a0e2431d418a7770c9f48f0e8e455db0a5b092e3d3a8e7f289f0ba3e73fa8afc3</originalsourceid><addsrcrecordid>eNqNkV-L1TAQxYMo7rLuJxCk4IsvXZNM2rS-iOw_hZUFUfAtpOmkm6VNatKu3G9vrve6XH0yLxlmfnOYwyHkJaNnjLbwdnCDTsahN5hrjbQVT8gxp0KWnMnvTw_qI3Ka0j3NT8qmkfCcHEFb10xyOCbh4vbzZfEFB5eWuHlXuGkecUK_OD8UJkzT6t2yKX-6HouI2wb6Xi8u-FTYEHNvDvE3nNYZ44NL2BeTNnfOYzGijn47c77oXBjDsHlBnlk9Jjzd_yfk29Xl1_OP5c3t9afzDzelgQqWUlPkAlgvWKOllNS0VjSWYoOiqvqO6qqjLUfoQTcoLW9aSzsNKMHqRlsDJ-T9Tndeuwl7kx1FPao5uknHjQraqb8n3t2pITwoxmoAUfGs8GavEMOPFdOiJpcMjqP2GNakgIm6rhijIqOv_0Hvwxp99relhARe8zpTsKNMDClFtI_XMKq2oaqDUNU-1Lz16tDI486fCDNwtgPCOv-X4i_YsrWd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144732626</pqid></control><display><type>article</type><title>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Attafi, Omar Abdelghani ; Clementel, Damiano ; Kyritsis, Konstantinos ; Capriotti, Emidio ; Farrell, Gavin ; Fragkouli, Styliani-Christina ; Castro, Leyla Jael ; Hatos, András ; Lenaerts, Tom ; Mazurenko, Stanislav ; Mozaffari, Soroush ; Pradelli, Franco ; Ruch, Patrick ; Savojardo, Castrense ; Turina, Paola ; Zambelli, Federico ; Piovesan, Damiano ; Monzon, Alexander Miguel ; Psomopoulos, Fotis ; Tosatto, Silvio C E</creator><creatorcontrib>Attafi, Omar Abdelghani ; Clementel, Damiano ; Kyritsis, Konstantinos ; Capriotti, Emidio ; Farrell, Gavin ; Fragkouli, Styliani-Christina ; Castro, Leyla Jael ; Hatos, András ; Lenaerts, Tom ; Mazurenko, Stanislav ; Mozaffari, Soroush ; Pradelli, Franco ; Ruch, Patrick ; Savojardo, Castrense ; Turina, Paola ; Zambelli, Federico ; Piovesan, Damiano ; Monzon, Alexander Miguel ; Psomopoulos, Fotis ; Tosatto, Silvio C E</creatorcontrib><description>Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giae094</identifier><identifier>PMID: 39661723</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Annotations ; Biology ; Databases, Factual ; Domes ; Humans ; Learning algorithms ; Machine learning ; Optimization models ; Registries ; Reproducibility ; Reproducibility of Results ; Review ; Supervised learning ; Supervised Machine Learning</subject><ispartof>Gigascience, 2024-01, Vol.13</ispartof><rights>The Author(s) 2024. Published by Oxford University Press GigaScience. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-a0e2431d418a7770c9f48f0e8e455db0a5b092e3d3a8e7f289f0ba3e73fa8afc3</cites><orcidid>0000-0002-7359-0633 ; 0009-0002-2327-9430 ; 0000-0002-3374-2962 ; 0000-0002-7395-2921 ; 0000-0003-3487-4331 ; 0000-0003-4067-7123 ; 0000-0001-8210-2390 ; 0000-0001-8035-341X ; 0000-0003-3986-0510 ; 0000-0001-9174-511X ; 0000-0003-0362-8218 ; 0000-0003-3645-1455 ; 0000-0001-5166-8551 ; 0000-0002-2323-0963 ; 0000-0002-7152-5512 ; 0000-0003-3659-4819 ; 0000-0001-9224-9820 ; 0000-0002-0222-4273 ; 0000-0003-4525-7793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633452/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633452/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39661723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Attafi, Omar Abdelghani</creatorcontrib><creatorcontrib>Clementel, Damiano</creatorcontrib><creatorcontrib>Kyritsis, Konstantinos</creatorcontrib><creatorcontrib>Capriotti, Emidio</creatorcontrib><creatorcontrib>Farrell, Gavin</creatorcontrib><creatorcontrib>Fragkouli, Styliani-Christina</creatorcontrib><creatorcontrib>Castro, Leyla Jael</creatorcontrib><creatorcontrib>Hatos, András</creatorcontrib><creatorcontrib>Lenaerts, Tom</creatorcontrib><creatorcontrib>Mazurenko, Stanislav</creatorcontrib><creatorcontrib>Mozaffari, Soroush</creatorcontrib><creatorcontrib>Pradelli, Franco</creatorcontrib><creatorcontrib>Ruch, Patrick</creatorcontrib><creatorcontrib>Savojardo, Castrense</creatorcontrib><creatorcontrib>Turina, Paola</creatorcontrib><creatorcontrib>Zambelli, Federico</creatorcontrib><creatorcontrib>Piovesan, Damiano</creatorcontrib><creatorcontrib>Monzon, Alexander Miguel</creatorcontrib><creatorcontrib>Psomopoulos, Fotis</creatorcontrib><creatorcontrib>Tosatto, Silvio C E</creatorcontrib><title>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.</description><subject>Annotations</subject><subject>Biology</subject><subject>Databases, Factual</subject><subject>Domes</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Optimization models</subject><subject>Registries</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV-L1TAQxYMo7rLuJxCk4IsvXZNM2rS-iOw_hZUFUfAtpOmkm6VNatKu3G9vrve6XH0yLxlmfnOYwyHkJaNnjLbwdnCDTsahN5hrjbQVT8gxp0KWnMnvTw_qI3Ka0j3NT8qmkfCcHEFb10xyOCbh4vbzZfEFB5eWuHlXuGkecUK_OD8UJkzT6t2yKX-6HouI2wb6Xi8u-FTYEHNvDvE3nNYZ44NL2BeTNnfOYzGijn47c77oXBjDsHlBnlk9Jjzd_yfk29Xl1_OP5c3t9afzDzelgQqWUlPkAlgvWKOllNS0VjSWYoOiqvqO6qqjLUfoQTcoLW9aSzsNKMHqRlsDJ-T9Tndeuwl7kx1FPao5uknHjQraqb8n3t2pITwoxmoAUfGs8GavEMOPFdOiJpcMjqP2GNakgIm6rhijIqOv_0Hvwxp99relhARe8zpTsKNMDClFtI_XMKq2oaqDUNU-1Lz16tDI486fCDNwtgPCOv-X4i_YsrWd</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Attafi, Omar Abdelghani</creator><creator>Clementel, Damiano</creator><creator>Kyritsis, Konstantinos</creator><creator>Capriotti, Emidio</creator><creator>Farrell, Gavin</creator><creator>Fragkouli, Styliani-Christina</creator><creator>Castro, Leyla Jael</creator><creator>Hatos, András</creator><creator>Lenaerts, Tom</creator><creator>Mazurenko, Stanislav</creator><creator>Mozaffari, Soroush</creator><creator>Pradelli, Franco</creator><creator>Ruch, Patrick</creator><creator>Savojardo, Castrense</creator><creator>Turina, Paola</creator><creator>Zambelli, Federico</creator><creator>Piovesan, Damiano</creator><creator>Monzon, Alexander Miguel</creator><creator>Psomopoulos, Fotis</creator><creator>Tosatto, Silvio C E</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7359-0633</orcidid><orcidid>https://orcid.org/0009-0002-2327-9430</orcidid><orcidid>https://orcid.org/0000-0002-3374-2962</orcidid><orcidid>https://orcid.org/0000-0002-7395-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-4331</orcidid><orcidid>https://orcid.org/0000-0003-4067-7123</orcidid><orcidid>https://orcid.org/0000-0001-8210-2390</orcidid><orcidid>https://orcid.org/0000-0001-8035-341X</orcidid><orcidid>https://orcid.org/0000-0003-3986-0510</orcidid><orcidid>https://orcid.org/0000-0001-9174-511X</orcidid><orcidid>https://orcid.org/0000-0003-0362-8218</orcidid><orcidid>https://orcid.org/0000-0003-3645-1455</orcidid><orcidid>https://orcid.org/0000-0001-5166-8551</orcidid><orcidid>https://orcid.org/0000-0002-2323-0963</orcidid><orcidid>https://orcid.org/0000-0002-7152-5512</orcidid><orcidid>https://orcid.org/0000-0003-3659-4819</orcidid><orcidid>https://orcid.org/0000-0001-9224-9820</orcidid><orcidid>https://orcid.org/0000-0002-0222-4273</orcidid><orcidid>https://orcid.org/0000-0003-4525-7793</orcidid></search><sort><creationdate>20240102</creationdate><title>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</title><author>Attafi, Omar Abdelghani ; Clementel, Damiano ; Kyritsis, Konstantinos ; Capriotti, Emidio ; Farrell, Gavin ; Fragkouli, Styliani-Christina ; Castro, Leyla Jael ; Hatos, András ; Lenaerts, Tom ; Mazurenko, Stanislav ; Mozaffari, Soroush ; Pradelli, Franco ; Ruch, Patrick ; Savojardo, Castrense ; Turina, Paola ; Zambelli, Federico ; Piovesan, Damiano ; Monzon, Alexander Miguel ; Psomopoulos, Fotis ; Tosatto, Silvio C E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a0e2431d418a7770c9f48f0e8e455db0a5b092e3d3a8e7f289f0ba3e73fa8afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Biology</topic><topic>Databases, Factual</topic><topic>Domes</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Optimization models</topic><topic>Registries</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attafi, Omar Abdelghani</creatorcontrib><creatorcontrib>Clementel, Damiano</creatorcontrib><creatorcontrib>Kyritsis, Konstantinos</creatorcontrib><creatorcontrib>Capriotti, Emidio</creatorcontrib><creatorcontrib>Farrell, Gavin</creatorcontrib><creatorcontrib>Fragkouli, Styliani-Christina</creatorcontrib><creatorcontrib>Castro, Leyla Jael</creatorcontrib><creatorcontrib>Hatos, András</creatorcontrib><creatorcontrib>Lenaerts, Tom</creatorcontrib><creatorcontrib>Mazurenko, Stanislav</creatorcontrib><creatorcontrib>Mozaffari, Soroush</creatorcontrib><creatorcontrib>Pradelli, Franco</creatorcontrib><creatorcontrib>Ruch, Patrick</creatorcontrib><creatorcontrib>Savojardo, Castrense</creatorcontrib><creatorcontrib>Turina, Paola</creatorcontrib><creatorcontrib>Zambelli, Federico</creatorcontrib><creatorcontrib>Piovesan, Damiano</creatorcontrib><creatorcontrib>Monzon, Alexander Miguel</creatorcontrib><creatorcontrib>Psomopoulos, Fotis</creatorcontrib><creatorcontrib>Tosatto, Silvio C E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attafi, Omar Abdelghani</au><au>Clementel, Damiano</au><au>Kyritsis, Konstantinos</au><au>Capriotti, Emidio</au><au>Farrell, Gavin</au><au>Fragkouli, Styliani-Christina</au><au>Castro, Leyla Jael</au><au>Hatos, András</au><au>Lenaerts, Tom</au><au>Mazurenko, Stanislav</au><au>Mozaffari, Soroush</au><au>Pradelli, Franco</au><au>Ruch, Patrick</au><au>Savojardo, Castrense</au><au>Turina, Paola</au><au>Zambelli, Federico</au><au>Piovesan, Damiano</au><au>Monzon, Alexander Miguel</au><au>Psomopoulos, Fotis</au><au>Tosatto, Silvio C E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2024-01-02</date><risdate>2024</risdate><volume>13</volume><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>39661723</pmid><doi>10.1093/gigascience/giae094</doi><orcidid>https://orcid.org/0000-0002-7359-0633</orcidid><orcidid>https://orcid.org/0009-0002-2327-9430</orcidid><orcidid>https://orcid.org/0000-0002-3374-2962</orcidid><orcidid>https://orcid.org/0000-0002-7395-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-4331</orcidid><orcidid>https://orcid.org/0000-0003-4067-7123</orcidid><orcidid>https://orcid.org/0000-0001-8210-2390</orcidid><orcidid>https://orcid.org/0000-0001-8035-341X</orcidid><orcidid>https://orcid.org/0000-0003-3986-0510</orcidid><orcidid>https://orcid.org/0000-0001-9174-511X</orcidid><orcidid>https://orcid.org/0000-0003-0362-8218</orcidid><orcidid>https://orcid.org/0000-0003-3645-1455</orcidid><orcidid>https://orcid.org/0000-0001-5166-8551</orcidid><orcidid>https://orcid.org/0000-0002-2323-0963</orcidid><orcidid>https://orcid.org/0000-0002-7152-5512</orcidid><orcidid>https://orcid.org/0000-0003-3659-4819</orcidid><orcidid>https://orcid.org/0000-0001-9224-9820</orcidid><orcidid>https://orcid.org/0000-0002-0222-4273</orcidid><orcidid>https://orcid.org/0000-0003-4525-7793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-217X |
ispartof | Gigascience, 2024-01, Vol.13 |
issn | 2047-217X 2047-217X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11633452 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Annotations Biology Databases, Factual Domes Humans Learning algorithms Machine learning Optimization models Registries Reproducibility Reproducibility of Results Review Supervised learning Supervised Machine Learning |
title | DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOME%20Registry:%20implementing%20community-wide%20recommendations%20for%20reporting%20supervised%20machine%20learning%20in%20biology&rft.jtitle=Gigascience&rft.au=Attafi,%20Omar%20Abdelghani&rft.date=2024-01-02&rft.volume=13&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giae094&rft_dat=%3Cproquest_pubme%3E3146651104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144732626&rft_id=info:pmid/39661723&rft_oup_id=10.1093/gigascience/giae094&rfr_iscdi=true |