DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology

Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2024-01, Vol.13
Hauptverfasser: Attafi, Omar Abdelghani, Clementel, Damiano, Kyritsis, Konstantinos, Capriotti, Emidio, Farrell, Gavin, Fragkouli, Styliani-Christina, Castro, Leyla Jael, Hatos, András, Lenaerts, Tom, Mazurenko, Stanislav, Mozaffari, Soroush, Pradelli, Franco, Ruch, Patrick, Savojardo, Castrense, Turina, Paola, Zambelli, Federico, Piovesan, Damiano, Monzon, Alexander Miguel, Psomopoulos, Fotis, Tosatto, Silvio C E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Gigascience
container_volume 13
creator Attafi, Omar Abdelghani
Clementel, Damiano
Kyritsis, Konstantinos
Capriotti, Emidio
Farrell, Gavin
Fragkouli, Styliani-Christina
Castro, Leyla Jael
Hatos, András
Lenaerts, Tom
Mazurenko, Stanislav
Mozaffari, Soroush
Pradelli, Franco
Ruch, Patrick
Savojardo, Castrense
Turina, Paola
Zambelli, Federico
Piovesan, Damiano
Monzon, Alexander Miguel
Psomopoulos, Fotis
Tosatto, Silvio C E
description Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
doi_str_mv 10.1093/gigascience/giae094
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11633452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giae094</oup_id><sourcerecordid>3146651104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a0e2431d418a7770c9f48f0e8e455db0a5b092e3d3a8e7f289f0ba3e73fa8afc3</originalsourceid><addsrcrecordid>eNqNkV-L1TAQxYMo7rLuJxCk4IsvXZNM2rS-iOw_hZUFUfAtpOmkm6VNatKu3G9vrve6XH0yLxlmfnOYwyHkJaNnjLbwdnCDTsahN5hrjbQVT8gxp0KWnMnvTw_qI3Ka0j3NT8qmkfCcHEFb10xyOCbh4vbzZfEFB5eWuHlXuGkecUK_OD8UJkzT6t2yKX-6HouI2wb6Xi8u-FTYEHNvDvE3nNYZ44NL2BeTNnfOYzGijn47c77oXBjDsHlBnlk9Jjzd_yfk29Xl1_OP5c3t9afzDzelgQqWUlPkAlgvWKOllNS0VjSWYoOiqvqO6qqjLUfoQTcoLW9aSzsNKMHqRlsDJ-T9Tndeuwl7kx1FPao5uknHjQraqb8n3t2pITwoxmoAUfGs8GavEMOPFdOiJpcMjqP2GNakgIm6rhijIqOv_0Hvwxp99relhARe8zpTsKNMDClFtI_XMKq2oaqDUNU-1Lz16tDI486fCDNwtgPCOv-X4i_YsrWd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144732626</pqid></control><display><type>article</type><title>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Attafi, Omar Abdelghani ; Clementel, Damiano ; Kyritsis, Konstantinos ; Capriotti, Emidio ; Farrell, Gavin ; Fragkouli, Styliani-Christina ; Castro, Leyla Jael ; Hatos, András ; Lenaerts, Tom ; Mazurenko, Stanislav ; Mozaffari, Soroush ; Pradelli, Franco ; Ruch, Patrick ; Savojardo, Castrense ; Turina, Paola ; Zambelli, Federico ; Piovesan, Damiano ; Monzon, Alexander Miguel ; Psomopoulos, Fotis ; Tosatto, Silvio C E</creator><creatorcontrib>Attafi, Omar Abdelghani ; Clementel, Damiano ; Kyritsis, Konstantinos ; Capriotti, Emidio ; Farrell, Gavin ; Fragkouli, Styliani-Christina ; Castro, Leyla Jael ; Hatos, András ; Lenaerts, Tom ; Mazurenko, Stanislav ; Mozaffari, Soroush ; Pradelli, Franco ; Ruch, Patrick ; Savojardo, Castrense ; Turina, Paola ; Zambelli, Federico ; Piovesan, Damiano ; Monzon, Alexander Miguel ; Psomopoulos, Fotis ; Tosatto, Silvio C E</creatorcontrib><description>Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giae094</identifier><identifier>PMID: 39661723</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Annotations ; Biology ; Databases, Factual ; Domes ; Humans ; Learning algorithms ; Machine learning ; Optimization models ; Registries ; Reproducibility ; Reproducibility of Results ; Review ; Supervised learning ; Supervised Machine Learning</subject><ispartof>Gigascience, 2024-01, Vol.13</ispartof><rights>The Author(s) 2024. Published by Oxford University Press GigaScience. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-a0e2431d418a7770c9f48f0e8e455db0a5b092e3d3a8e7f289f0ba3e73fa8afc3</cites><orcidid>0000-0002-7359-0633 ; 0009-0002-2327-9430 ; 0000-0002-3374-2962 ; 0000-0002-7395-2921 ; 0000-0003-3487-4331 ; 0000-0003-4067-7123 ; 0000-0001-8210-2390 ; 0000-0001-8035-341X ; 0000-0003-3986-0510 ; 0000-0001-9174-511X ; 0000-0003-0362-8218 ; 0000-0003-3645-1455 ; 0000-0001-5166-8551 ; 0000-0002-2323-0963 ; 0000-0002-7152-5512 ; 0000-0003-3659-4819 ; 0000-0001-9224-9820 ; 0000-0002-0222-4273 ; 0000-0003-4525-7793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633452/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633452/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39661723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Attafi, Omar Abdelghani</creatorcontrib><creatorcontrib>Clementel, Damiano</creatorcontrib><creatorcontrib>Kyritsis, Konstantinos</creatorcontrib><creatorcontrib>Capriotti, Emidio</creatorcontrib><creatorcontrib>Farrell, Gavin</creatorcontrib><creatorcontrib>Fragkouli, Styliani-Christina</creatorcontrib><creatorcontrib>Castro, Leyla Jael</creatorcontrib><creatorcontrib>Hatos, András</creatorcontrib><creatorcontrib>Lenaerts, Tom</creatorcontrib><creatorcontrib>Mazurenko, Stanislav</creatorcontrib><creatorcontrib>Mozaffari, Soroush</creatorcontrib><creatorcontrib>Pradelli, Franco</creatorcontrib><creatorcontrib>Ruch, Patrick</creatorcontrib><creatorcontrib>Savojardo, Castrense</creatorcontrib><creatorcontrib>Turina, Paola</creatorcontrib><creatorcontrib>Zambelli, Federico</creatorcontrib><creatorcontrib>Piovesan, Damiano</creatorcontrib><creatorcontrib>Monzon, Alexander Miguel</creatorcontrib><creatorcontrib>Psomopoulos, Fotis</creatorcontrib><creatorcontrib>Tosatto, Silvio C E</creatorcontrib><title>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.</description><subject>Annotations</subject><subject>Biology</subject><subject>Databases, Factual</subject><subject>Domes</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Optimization models</subject><subject>Registries</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Review</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV-L1TAQxYMo7rLuJxCk4IsvXZNM2rS-iOw_hZUFUfAtpOmkm6VNatKu3G9vrve6XH0yLxlmfnOYwyHkJaNnjLbwdnCDTsahN5hrjbQVT8gxp0KWnMnvTw_qI3Ka0j3NT8qmkfCcHEFb10xyOCbh4vbzZfEFB5eWuHlXuGkecUK_OD8UJkzT6t2yKX-6HouI2wb6Xi8u-FTYEHNvDvE3nNYZ44NL2BeTNnfOYzGijn47c77oXBjDsHlBnlk9Jjzd_yfk29Xl1_OP5c3t9afzDzelgQqWUlPkAlgvWKOllNS0VjSWYoOiqvqO6qqjLUfoQTcoLW9aSzsNKMHqRlsDJ-T9Tndeuwl7kx1FPao5uknHjQraqb8n3t2pITwoxmoAUfGs8GavEMOPFdOiJpcMjqP2GNakgIm6rhijIqOv_0Hvwxp99relhARe8zpTsKNMDClFtI_XMKq2oaqDUNU-1Lz16tDI486fCDNwtgPCOv-X4i_YsrWd</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Attafi, Omar Abdelghani</creator><creator>Clementel, Damiano</creator><creator>Kyritsis, Konstantinos</creator><creator>Capriotti, Emidio</creator><creator>Farrell, Gavin</creator><creator>Fragkouli, Styliani-Christina</creator><creator>Castro, Leyla Jael</creator><creator>Hatos, András</creator><creator>Lenaerts, Tom</creator><creator>Mazurenko, Stanislav</creator><creator>Mozaffari, Soroush</creator><creator>Pradelli, Franco</creator><creator>Ruch, Patrick</creator><creator>Savojardo, Castrense</creator><creator>Turina, Paola</creator><creator>Zambelli, Federico</creator><creator>Piovesan, Damiano</creator><creator>Monzon, Alexander Miguel</creator><creator>Psomopoulos, Fotis</creator><creator>Tosatto, Silvio C E</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7359-0633</orcidid><orcidid>https://orcid.org/0009-0002-2327-9430</orcidid><orcidid>https://orcid.org/0000-0002-3374-2962</orcidid><orcidid>https://orcid.org/0000-0002-7395-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-4331</orcidid><orcidid>https://orcid.org/0000-0003-4067-7123</orcidid><orcidid>https://orcid.org/0000-0001-8210-2390</orcidid><orcidid>https://orcid.org/0000-0001-8035-341X</orcidid><orcidid>https://orcid.org/0000-0003-3986-0510</orcidid><orcidid>https://orcid.org/0000-0001-9174-511X</orcidid><orcidid>https://orcid.org/0000-0003-0362-8218</orcidid><orcidid>https://orcid.org/0000-0003-3645-1455</orcidid><orcidid>https://orcid.org/0000-0001-5166-8551</orcidid><orcidid>https://orcid.org/0000-0002-2323-0963</orcidid><orcidid>https://orcid.org/0000-0002-7152-5512</orcidid><orcidid>https://orcid.org/0000-0003-3659-4819</orcidid><orcidid>https://orcid.org/0000-0001-9224-9820</orcidid><orcidid>https://orcid.org/0000-0002-0222-4273</orcidid><orcidid>https://orcid.org/0000-0003-4525-7793</orcidid></search><sort><creationdate>20240102</creationdate><title>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</title><author>Attafi, Omar Abdelghani ; Clementel, Damiano ; Kyritsis, Konstantinos ; Capriotti, Emidio ; Farrell, Gavin ; Fragkouli, Styliani-Christina ; Castro, Leyla Jael ; Hatos, András ; Lenaerts, Tom ; Mazurenko, Stanislav ; Mozaffari, Soroush ; Pradelli, Franco ; Ruch, Patrick ; Savojardo, Castrense ; Turina, Paola ; Zambelli, Federico ; Piovesan, Damiano ; Monzon, Alexander Miguel ; Psomopoulos, Fotis ; Tosatto, Silvio C E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a0e2431d418a7770c9f48f0e8e455db0a5b092e3d3a8e7f289f0ba3e73fa8afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Biology</topic><topic>Databases, Factual</topic><topic>Domes</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Optimization models</topic><topic>Registries</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Review</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attafi, Omar Abdelghani</creatorcontrib><creatorcontrib>Clementel, Damiano</creatorcontrib><creatorcontrib>Kyritsis, Konstantinos</creatorcontrib><creatorcontrib>Capriotti, Emidio</creatorcontrib><creatorcontrib>Farrell, Gavin</creatorcontrib><creatorcontrib>Fragkouli, Styliani-Christina</creatorcontrib><creatorcontrib>Castro, Leyla Jael</creatorcontrib><creatorcontrib>Hatos, András</creatorcontrib><creatorcontrib>Lenaerts, Tom</creatorcontrib><creatorcontrib>Mazurenko, Stanislav</creatorcontrib><creatorcontrib>Mozaffari, Soroush</creatorcontrib><creatorcontrib>Pradelli, Franco</creatorcontrib><creatorcontrib>Ruch, Patrick</creatorcontrib><creatorcontrib>Savojardo, Castrense</creatorcontrib><creatorcontrib>Turina, Paola</creatorcontrib><creatorcontrib>Zambelli, Federico</creatorcontrib><creatorcontrib>Piovesan, Damiano</creatorcontrib><creatorcontrib>Monzon, Alexander Miguel</creatorcontrib><creatorcontrib>Psomopoulos, Fotis</creatorcontrib><creatorcontrib>Tosatto, Silvio C E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attafi, Omar Abdelghani</au><au>Clementel, Damiano</au><au>Kyritsis, Konstantinos</au><au>Capriotti, Emidio</au><au>Farrell, Gavin</au><au>Fragkouli, Styliani-Christina</au><au>Castro, Leyla Jael</au><au>Hatos, András</au><au>Lenaerts, Tom</au><au>Mazurenko, Stanislav</au><au>Mozaffari, Soroush</au><au>Pradelli, Franco</au><au>Ruch, Patrick</au><au>Savojardo, Castrense</au><au>Turina, Paola</au><au>Zambelli, Federico</au><au>Piovesan, Damiano</au><au>Monzon, Alexander Miguel</au><au>Psomopoulos, Fotis</au><au>Tosatto, Silvio C E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2024-01-02</date><risdate>2024</risdate><volume>13</volume><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>39661723</pmid><doi>10.1093/gigascience/giae094</doi><orcidid>https://orcid.org/0000-0002-7359-0633</orcidid><orcidid>https://orcid.org/0009-0002-2327-9430</orcidid><orcidid>https://orcid.org/0000-0002-3374-2962</orcidid><orcidid>https://orcid.org/0000-0002-7395-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-4331</orcidid><orcidid>https://orcid.org/0000-0003-4067-7123</orcidid><orcidid>https://orcid.org/0000-0001-8210-2390</orcidid><orcidid>https://orcid.org/0000-0001-8035-341X</orcidid><orcidid>https://orcid.org/0000-0003-3986-0510</orcidid><orcidid>https://orcid.org/0000-0001-9174-511X</orcidid><orcidid>https://orcid.org/0000-0003-0362-8218</orcidid><orcidid>https://orcid.org/0000-0003-3645-1455</orcidid><orcidid>https://orcid.org/0000-0001-5166-8551</orcidid><orcidid>https://orcid.org/0000-0002-2323-0963</orcidid><orcidid>https://orcid.org/0000-0002-7152-5512</orcidid><orcidid>https://orcid.org/0000-0003-3659-4819</orcidid><orcidid>https://orcid.org/0000-0001-9224-9820</orcidid><orcidid>https://orcid.org/0000-0002-0222-4273</orcidid><orcidid>https://orcid.org/0000-0003-4525-7793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2024-01, Vol.13
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11633452
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Annotations
Biology
Databases, Factual
Domes
Humans
Learning algorithms
Machine learning
Optimization models
Registries
Reproducibility
Reproducibility of Results
Review
Supervised learning
Supervised Machine Learning
title DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOME%20Registry:%20implementing%20community-wide%20recommendations%20for%20reporting%20supervised%20machine%20learning%20in%20biology&rft.jtitle=Gigascience&rft.au=Attafi,%20Omar%20Abdelghani&rft.date=2024-01-02&rft.volume=13&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giae094&rft_dat=%3Cproquest_pubme%3E3146651104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144732626&rft_id=info:pmid/39661723&rft_oup_id=10.1093/gigascience/giae094&rfr_iscdi=true