Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments

Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein–ligand binding, impacting both the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-12, Vol.64 (23), p.8980-8998
Hauptverfasser: Szalai, Tibor Viktor, Bajusz, Dávid, Börzsei, Rita, Zsidó, Balázs Zoltán, Ilaš, Janez, Ferenczy, György G., Hetényi, Csaba, Keserű, György M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8998
container_issue 23
container_start_page 8980
container_title Journal of chemical information and modeling
container_volume 64
creator Szalai, Tibor Viktor
Bajusz, Dávid
Börzsei, Rita
Zsidó, Balázs Zoltán
Ilaš, Janez
Ferenczy, György G.
Hetényi, Csaba
Keserű, György M.
description Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein–ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein–ligand–water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein–ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein–ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.
doi_str_mv 10.1021/acs.jcim.4c01291
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131850581</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-3d0bcf2f00e6323d5968b9de0daa50635323582993225ed2cfec891b6e7d9dbb3</originalsourceid><addsrcrecordid>eNp1UUtPAyEYJEZjtXr3ZEi8eLCVR9kuXow29ZE06qFGb4QFtlJ3lwq7Pv691LZGTbwAH8zMN3wDwB5GXYwIPpYqdKfKlt2eQphwvAa2MOvxDk_Q4_rqzHjSAtshTBGilCdkE7QoZ_0kYXwLjId5blQNXQ4fZG08vDH1m_PPAd5WcGQnstLw3FbaVpMTOHDlrKllbV0lC3jnjbZqXgT4GuDwfWa8LU1Vhx2wkcsimN3l3gb3F8Px4Kozur28HpyNOpIiWneoRpnKSY6QSSihOhpNM64N0lIylFAWL1lKOKeEMKOJik5TjrPE9DXXWUbb4HShO2uy0mgVe3tZiFm0If2HcNKK3y-VfRIT9yowjg37KYoKh0sF714aE2pR2qBMUcjKuCYIiilOGWIpjtCDP9Cpa3wcxBzVi5Mlvbi2AVqglHcheJN_u8FIzDMTMTMxz0wsM4uU_Z-_-CasQoqAowXgi7pq-q_eJ6eJo6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143392443</pqid></control><display><type>article</type><title>Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Szalai, Tibor Viktor ; Bajusz, Dávid ; Börzsei, Rita ; Zsidó, Balázs Zoltán ; Ilaš, Janez ; Ferenczy, György G. ; Hetényi, Csaba ; Keserű, György M.</creator><creatorcontrib>Szalai, Tibor Viktor ; Bajusz, Dávid ; Börzsei, Rita ; Zsidó, Balázs Zoltán ; Ilaš, Janez ; Ferenczy, György G. ; Hetényi, Csaba ; Keserű, György M.</creatorcontrib><description>Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein–ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein–ligand–water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein–ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein–ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c01291</identifier><identifier>PMID: 39576659</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benzamidines - chemistry ; Benzamidines - metabolism ; Binding Sites ; Calorimetry ; Carbonic anhydrase ; Carbonic Anhydrase II - chemistry ; Carbonic Anhydrase II - metabolism ; Complex formation ; Enthalpy ; Free energy ; Heavy water ; Ligands ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; Networks ; Neutron diffraction ; Pharmaceutical Modeling ; Protein Binding ; Proteins ; Software ; Solvents ; Solvents - chemistry ; Structural analysis ; Sulfonamides ; Sulfonamides - chemistry ; Sulfonamides - metabolism ; Ternary systems ; Thermodynamics ; Titration calorimetry ; Trypsin - chemistry ; Trypsin - metabolism ; Water ; Water - chemistry</subject><ispartof>Journal of chemical information and modeling, 2024-12, Vol.64 (23), p.8980-8998</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Dec 9, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a303t-3d0bcf2f00e6323d5968b9de0daa50635323582993225ed2cfec891b6e7d9dbb3</cites><orcidid>0009-0000-4088-3117 ; 0000-0003-1039-7809 ; 0000-0003-4277-9481 ; 0000-0002-0124-0474 ; 0000-0002-8013-971X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c01291$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c01291$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39576659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szalai, Tibor Viktor</creatorcontrib><creatorcontrib>Bajusz, Dávid</creatorcontrib><creatorcontrib>Börzsei, Rita</creatorcontrib><creatorcontrib>Zsidó, Balázs Zoltán</creatorcontrib><creatorcontrib>Ilaš, Janez</creatorcontrib><creatorcontrib>Ferenczy, György G.</creatorcontrib><creatorcontrib>Hetényi, Csaba</creatorcontrib><creatorcontrib>Keserű, György M.</creatorcontrib><title>Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein–ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein–ligand–water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein–ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein–ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.</description><subject>Benzamidines - chemistry</subject><subject>Benzamidines - metabolism</subject><subject>Binding Sites</subject><subject>Calorimetry</subject><subject>Carbonic anhydrase</subject><subject>Carbonic Anhydrase II - chemistry</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Complex formation</subject><subject>Enthalpy</subject><subject>Free energy</subject><subject>Heavy water</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Networks</subject><subject>Neutron diffraction</subject><subject>Pharmaceutical Modeling</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Software</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Structural analysis</subject><subject>Sulfonamides</subject><subject>Sulfonamides - chemistry</subject><subject>Sulfonamides - metabolism</subject><subject>Ternary systems</subject><subject>Thermodynamics</subject><subject>Titration calorimetry</subject><subject>Trypsin - chemistry</subject><subject>Trypsin - metabolism</subject><subject>Water</subject><subject>Water - chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UUtPAyEYJEZjtXr3ZEi8eLCVR9kuXow29ZE06qFGb4QFtlJ3lwq7Pv691LZGTbwAH8zMN3wDwB5GXYwIPpYqdKfKlt2eQphwvAa2MOvxDk_Q4_rqzHjSAtshTBGilCdkE7QoZ_0kYXwLjId5blQNXQ4fZG08vDH1m_PPAd5WcGQnstLw3FbaVpMTOHDlrKllbV0lC3jnjbZqXgT4GuDwfWa8LU1Vhx2wkcsimN3l3gb3F8Px4Kozur28HpyNOpIiWneoRpnKSY6QSSihOhpNM64N0lIylFAWL1lKOKeEMKOJik5TjrPE9DXXWUbb4HShO2uy0mgVe3tZiFm0If2HcNKK3y-VfRIT9yowjg37KYoKh0sF714aE2pR2qBMUcjKuCYIiilOGWIpjtCDP9Cpa3wcxBzVi5Mlvbi2AVqglHcheJN_u8FIzDMTMTMxz0wsM4uU_Z-_-CasQoqAowXgi7pq-q_eJ6eJo6c</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Szalai, Tibor Viktor</creator><creator>Bajusz, Dávid</creator><creator>Börzsei, Rita</creator><creator>Zsidó, Balázs Zoltán</creator><creator>Ilaš, Janez</creator><creator>Ferenczy, György G.</creator><creator>Hetényi, Csaba</creator><creator>Keserű, György M.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-4088-3117</orcidid><orcidid>https://orcid.org/0000-0003-1039-7809</orcidid><orcidid>https://orcid.org/0000-0003-4277-9481</orcidid><orcidid>https://orcid.org/0000-0002-0124-0474</orcidid><orcidid>https://orcid.org/0000-0002-8013-971X</orcidid></search><sort><creationdate>20241209</creationdate><title>Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments</title><author>Szalai, Tibor Viktor ; Bajusz, Dávid ; Börzsei, Rita ; Zsidó, Balázs Zoltán ; Ilaš, Janez ; Ferenczy, György G. ; Hetényi, Csaba ; Keserű, György M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-3d0bcf2f00e6323d5968b9de0daa50635323582993225ed2cfec891b6e7d9dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzamidines - chemistry</topic><topic>Benzamidines - metabolism</topic><topic>Binding Sites</topic><topic>Calorimetry</topic><topic>Carbonic anhydrase</topic><topic>Carbonic Anhydrase II - chemistry</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Complex formation</topic><topic>Enthalpy</topic><topic>Free energy</topic><topic>Heavy water</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Networks</topic><topic>Neutron diffraction</topic><topic>Pharmaceutical Modeling</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Software</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Structural analysis</topic><topic>Sulfonamides</topic><topic>Sulfonamides - chemistry</topic><topic>Sulfonamides - metabolism</topic><topic>Ternary systems</topic><topic>Thermodynamics</topic><topic>Titration calorimetry</topic><topic>Trypsin - chemistry</topic><topic>Trypsin - metabolism</topic><topic>Water</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szalai, Tibor Viktor</creatorcontrib><creatorcontrib>Bajusz, Dávid</creatorcontrib><creatorcontrib>Börzsei, Rita</creatorcontrib><creatorcontrib>Zsidó, Balázs Zoltán</creatorcontrib><creatorcontrib>Ilaš, Janez</creatorcontrib><creatorcontrib>Ferenczy, György G.</creatorcontrib><creatorcontrib>Hetényi, Csaba</creatorcontrib><creatorcontrib>Keserű, György M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szalai, Tibor Viktor</au><au>Bajusz, Dávid</au><au>Börzsei, Rita</au><au>Zsidó, Balázs Zoltán</au><au>Ilaš, Janez</au><au>Ferenczy, György G.</au><au>Hetényi, Csaba</au><au>Keserű, György M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-12-09</date><risdate>2024</risdate><volume>64</volume><issue>23</issue><spage>8980</spage><epage>8998</epage><pages>8980-8998</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein–ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein–ligand–water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein–ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein–ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39576659</pmid><doi>10.1021/acs.jcim.4c01291</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0000-4088-3117</orcidid><orcidid>https://orcid.org/0000-0003-1039-7809</orcidid><orcidid>https://orcid.org/0000-0003-4277-9481</orcidid><orcidid>https://orcid.org/0000-0002-0124-0474</orcidid><orcidid>https://orcid.org/0000-0002-8013-971X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-12, Vol.64 (23), p.8980-8998
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632780
source MEDLINE; American Chemical Society Journals
subjects Benzamidines - chemistry
Benzamidines - metabolism
Binding Sites
Calorimetry
Carbonic anhydrase
Carbonic Anhydrase II - chemistry
Carbonic Anhydrase II - metabolism
Complex formation
Enthalpy
Free energy
Heavy water
Ligands
Models, Molecular
Molecular dynamics
Molecular Dynamics Simulation
Networks
Neutron diffraction
Pharmaceutical Modeling
Protein Binding
Proteins
Software
Solvents
Solvents - chemistry
Structural analysis
Sulfonamides
Sulfonamides - chemistry
Sulfonamides - metabolism
Ternary systems
Thermodynamics
Titration calorimetry
Trypsin - chemistry
Trypsin - metabolism
Water
Water - chemistry
title Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Water%20Networks%20On%20Ligand%20Binding:%20Computational%20Predictions%20vs%20Experiments&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Szalai,%20Tibor%20Viktor&rft.date=2024-12-09&rft.volume=64&rft.issue=23&rft.spage=8980&rft.epage=8998&rft.pages=8980-8998&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c01291&rft_dat=%3Cproquest_pubme%3E3131850581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143392443&rft_id=info:pmid/39576659&rfr_iscdi=true