Critical Factors Affecting the Selective Transformation of 5‐Hydroxymethylfurfural to 3‐Hydroxymethylcyclopentanone Over Ni Catalysts
The ring‐rearrangement of 5‐hydroxymethylfurfural (HMF) to 3‐hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid‐base properties. Their catalytic performance was tested in a batch stirred r...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2024-12, Vol.17 (23), p.e202400559-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e202400559 |
container_title | ChemSusChem |
container_volume | 17 |
creator | Morales, María V. Conesa, José M. Campos‐Castellanos, Eduardo Guerrero‐Ruiz, Antonio Rodríguez‐Ramos, Inmaculada |
description | The ring‐rearrangement of 5‐hydroxymethylfurfural (HMF) to 3‐hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid‐base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non‐water path leading to the total hydrogenation product, 2,5‐di‐hydroxymethyl‐tetrahydrofuran (DHMTHF), and two parallel acid‐catalyzed water‐mediated routes responsible for (ii) ring‐opening and (iii) ring‐rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min−1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG‐ox (initial TOF=5.92 min−1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
While HCPN emerged as the primary product, the reaction rate and products distribution during the aqueous‐phase HMF hydrogenation over Ni‐supported catalysts were influenced by the acid properties of the catalytic system, the structural properties and hydrothermal stability of the support, as well as the purity level of the HMF feedstock. |
doi_str_mv | 10.1002/cssc.202400559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142803009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-33e38cd6c0f7a6b06f1ca32c56c3c898aa3aaa19b5bc000511e5339d50a599d43</originalsourceid><addsrcrecordid>eNqFkbFv1DAYxSMEoqWwMiJLLCx3fI5jN55QFVGKVNHhisRmfec4PVdOfNjOQTZWNv5G_hIcXTmgC5Il2_p-fnrPryieU1hSgPK1jlEvSygrAM7lg-KY1qJacFF9eng4M3pUPInxFkCAFOJxccTqWgBn7Lj43gSbrEZHzlEnHyI56zqjkx1uSNoYsjJuvu0MuQ44xM6HHpP1A_Ed4T-__biY2uC_Tr1Jm8l1Y8grayVP2P2hnrTzWzMkHPxgyNXOBPLBkgYTuimm-LR41KGL5tndflJ8PH973VwsLq_evW_OLhea8UouGDOs1q3Q0J2iWIPoqEZWai4007WsERkiUrnmaw35Uyg1OahsOSCXsq3YSfFmr7sd171pdXaULattsD2GSXm06t_JYDfqxu8UpYKVvJ4VXt0pBP95NDGp3kZtnMPB-DEqBkKcSmBCZvTlPfTWj2HI-RSjVVkDA5ip5Z7SwccYTHdwQ0HNNau5ZnWoOT948XeGA_671wzIPfDFOjP9R041q1XzR_wXjdi6jA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142803009</pqid></control><display><type>article</type><title>Critical Factors Affecting the Selective Transformation of 5‐Hydroxymethylfurfural to 3‐Hydroxymethylcyclopentanone Over Ni Catalysts</title><source>Wiley Online Library All Journals</source><creator>Morales, María V. ; Conesa, José M. ; Campos‐Castellanos, Eduardo ; Guerrero‐Ruiz, Antonio ; Rodríguez‐Ramos, Inmaculada</creator><creatorcontrib>Morales, María V. ; Conesa, José M. ; Campos‐Castellanos, Eduardo ; Guerrero‐Ruiz, Antonio ; Rodríguez‐Ramos, Inmaculada</creatorcontrib><description>The ring‐rearrangement of 5‐hydroxymethylfurfural (HMF) to 3‐hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid‐base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non‐water path leading to the total hydrogenation product, 2,5‐di‐hydroxymethyl‐tetrahydrofuran (DHMTHF), and two parallel acid‐catalyzed water‐mediated routes responsible for (ii) ring‐opening and (iii) ring‐rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min−1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG‐ox (initial TOF=5.92 min−1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
While HCPN emerged as the primary product, the reaction rate and products distribution during the aqueous‐phase HMF hydrogenation over Ni‐supported catalysts were influenced by the acid properties of the catalytic system, the structural properties and hydrothermal stability of the support, as well as the purity level of the HMF feedstock.</description><identifier>ISSN: 1864-5631</identifier><identifier>ISSN: 1864-564X</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202400559</identifier><identifier>PMID: 38860533</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acidic oxides ; Acidity ; Aluminum oxide ; aqueous media ; Aqueous solutions ; Catalysts ; Hydrogenation ; Hydroxymethylfurfural ; Metal oxides ; Poisoning (reaction inhibition) ; Reaction products ; ring-rearrangement ; Selectivity ; support effect ; Tetrahydrofuran ; Zirconium dioxide</subject><ispartof>ChemSusChem, 2024-12, Vol.17 (23), p.e202400559-n/a</ispartof><rights>2024 The Authors. ChemSusChem published by Wiley-VCH GmbH</rights><rights>2024 The Authors. ChemSusChem published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3549-33e38cd6c0f7a6b06f1ca32c56c3c898aa3aaa19b5bc000511e5339d50a599d43</cites><orcidid>0000-0003-2834-0296 ; 0000-0001-5470-7958 ; 0000-0003-4622-6008 ; 0000-0003-1848-5985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202400559$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202400559$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38860533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morales, María V.</creatorcontrib><creatorcontrib>Conesa, José M.</creatorcontrib><creatorcontrib>Campos‐Castellanos, Eduardo</creatorcontrib><creatorcontrib>Guerrero‐Ruiz, Antonio</creatorcontrib><creatorcontrib>Rodríguez‐Ramos, Inmaculada</creatorcontrib><title>Critical Factors Affecting the Selective Transformation of 5‐Hydroxymethylfurfural to 3‐Hydroxymethylcyclopentanone Over Ni Catalysts</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The ring‐rearrangement of 5‐hydroxymethylfurfural (HMF) to 3‐hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid‐base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non‐water path leading to the total hydrogenation product, 2,5‐di‐hydroxymethyl‐tetrahydrofuran (DHMTHF), and two parallel acid‐catalyzed water‐mediated routes responsible for (ii) ring‐opening and (iii) ring‐rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min−1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG‐ox (initial TOF=5.92 min−1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
While HCPN emerged as the primary product, the reaction rate and products distribution during the aqueous‐phase HMF hydrogenation over Ni‐supported catalysts were influenced by the acid properties of the catalytic system, the structural properties and hydrothermal stability of the support, as well as the purity level of the HMF feedstock.</description><subject>Acidic oxides</subject><subject>Acidity</subject><subject>Aluminum oxide</subject><subject>aqueous media</subject><subject>Aqueous solutions</subject><subject>Catalysts</subject><subject>Hydrogenation</subject><subject>Hydroxymethylfurfural</subject><subject>Metal oxides</subject><subject>Poisoning (reaction inhibition)</subject><subject>Reaction products</subject><subject>ring-rearrangement</subject><subject>Selectivity</subject><subject>support effect</subject><subject>Tetrahydrofuran</subject><subject>Zirconium dioxide</subject><issn>1864-5631</issn><issn>1864-564X</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkbFv1DAYxSMEoqWwMiJLLCx3fI5jN55QFVGKVNHhisRmfec4PVdOfNjOQTZWNv5G_hIcXTmgC5Il2_p-fnrPryieU1hSgPK1jlEvSygrAM7lg-KY1qJacFF9eng4M3pUPInxFkCAFOJxccTqWgBn7Lj43gSbrEZHzlEnHyI56zqjkx1uSNoYsjJuvu0MuQ44xM6HHpP1A_Ed4T-__biY2uC_Tr1Jm8l1Y8grayVP2P2hnrTzWzMkHPxgyNXOBPLBkgYTuimm-LR41KGL5tndflJ8PH973VwsLq_evW_OLhea8UouGDOs1q3Q0J2iWIPoqEZWai4007WsERkiUrnmaw35Uyg1OahsOSCXsq3YSfFmr7sd171pdXaULattsD2GSXm06t_JYDfqxu8UpYKVvJ4VXt0pBP95NDGp3kZtnMPB-DEqBkKcSmBCZvTlPfTWj2HI-RSjVVkDA5ip5Z7SwccYTHdwQ0HNNau5ZnWoOT948XeGA_671wzIPfDFOjP9R041q1XzR_wXjdi6jA</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Morales, María V.</creator><creator>Conesa, José M.</creator><creator>Campos‐Castellanos, Eduardo</creator><creator>Guerrero‐Ruiz, Antonio</creator><creator>Rodríguez‐Ramos, Inmaculada</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2834-0296</orcidid><orcidid>https://orcid.org/0000-0001-5470-7958</orcidid><orcidid>https://orcid.org/0000-0003-4622-6008</orcidid><orcidid>https://orcid.org/0000-0003-1848-5985</orcidid></search><sort><creationdate>20241206</creationdate><title>Critical Factors Affecting the Selective Transformation of 5‐Hydroxymethylfurfural to 3‐Hydroxymethylcyclopentanone Over Ni Catalysts</title><author>Morales, María V. ; Conesa, José M. ; Campos‐Castellanos, Eduardo ; Guerrero‐Ruiz, Antonio ; Rodríguez‐Ramos, Inmaculada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-33e38cd6c0f7a6b06f1ca32c56c3c898aa3aaa19b5bc000511e5339d50a599d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Acidity</topic><topic>Aluminum oxide</topic><topic>aqueous media</topic><topic>Aqueous solutions</topic><topic>Catalysts</topic><topic>Hydrogenation</topic><topic>Hydroxymethylfurfural</topic><topic>Metal oxides</topic><topic>Poisoning (reaction inhibition)</topic><topic>Reaction products</topic><topic>ring-rearrangement</topic><topic>Selectivity</topic><topic>support effect</topic><topic>Tetrahydrofuran</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, María V.</creatorcontrib><creatorcontrib>Conesa, José M.</creatorcontrib><creatorcontrib>Campos‐Castellanos, Eduardo</creatorcontrib><creatorcontrib>Guerrero‐Ruiz, Antonio</creatorcontrib><creatorcontrib>Rodríguez‐Ramos, Inmaculada</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, María V.</au><au>Conesa, José M.</au><au>Campos‐Castellanos, Eduardo</au><au>Guerrero‐Ruiz, Antonio</au><au>Rodríguez‐Ramos, Inmaculada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Factors Affecting the Selective Transformation of 5‐Hydroxymethylfurfural to 3‐Hydroxymethylcyclopentanone Over Ni Catalysts</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>17</volume><issue>23</issue><spage>e202400559</spage><epage>n/a</epage><pages>e202400559-n/a</pages><issn>1864-5631</issn><issn>1864-564X</issn><eissn>1864-564X</eissn><abstract>The ring‐rearrangement of 5‐hydroxymethylfurfural (HMF) to 3‐hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid‐base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non‐water path leading to the total hydrogenation product, 2,5‐di‐hydroxymethyl‐tetrahydrofuran (DHMTHF), and two parallel acid‐catalyzed water‐mediated routes responsible for (ii) ring‐opening and (iii) ring‐rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min−1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG‐ox (initial TOF=5.92 min−1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
While HCPN emerged as the primary product, the reaction rate and products distribution during the aqueous‐phase HMF hydrogenation over Ni‐supported catalysts were influenced by the acid properties of the catalytic system, the structural properties and hydrothermal stability of the support, as well as the purity level of the HMF feedstock.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38860533</pmid><doi>10.1002/cssc.202400559</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2834-0296</orcidid><orcidid>https://orcid.org/0000-0001-5470-7958</orcidid><orcidid>https://orcid.org/0000-0003-4622-6008</orcidid><orcidid>https://orcid.org/0000-0003-1848-5985</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2024-12, Vol.17 (23), p.e202400559-n/a |
issn | 1864-5631 1864-564X 1864-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632584 |
source | Wiley Online Library All Journals |
subjects | Acidic oxides Acidity Aluminum oxide aqueous media Aqueous solutions Catalysts Hydrogenation Hydroxymethylfurfural Metal oxides Poisoning (reaction inhibition) Reaction products ring-rearrangement Selectivity support effect Tetrahydrofuran Zirconium dioxide |
title | Critical Factors Affecting the Selective Transformation of 5‐Hydroxymethylfurfural to 3‐Hydroxymethylcyclopentanone Over Ni Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Factors%20Affecting%20the%20Selective%20Transformation%20of%205%E2%80%90Hydroxymethylfurfural%20to%203%E2%80%90Hydroxymethylcyclopentanone%20Over%20Ni%20Catalysts&rft.jtitle=ChemSusChem&rft.au=Morales,%20Mar%C3%ADa%20V.&rft.date=2024-12-06&rft.volume=17&rft.issue=23&rft.spage=e202400559&rft.epage=n/a&rft.pages=e202400559-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202400559&rft_dat=%3Cproquest_pubme%3E3142803009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142803009&rft_id=info:pmid/38860533&rfr_iscdi=true |