Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to e...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2024-11, Vol.176 (6), p.e70003-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e70003 |
container_title | Physiologia plantarum |
container_volume | 176 |
creator | Moine, Amedeo Chitarra, Walter Nerva, Luca Agliassa, Chiara Gambino, Giorgio Secchi, Francesca Pagliarani, Chiara Boccacci, Paolo |
description | Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).
To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes.
Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence.
Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit. |
doi_str_mv | 10.1111/ppl.70003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149125588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-edbf73a02e54dcd5318fd4e97a02bbda52ea26e6d9fd7867ed2af9e7181c7aaa3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkG0cJ05yQmgFBWkleoCz5diTjbeOHWyn1d54AA48I0-Cd1MqQGIu1vzz6feMfoSek3xNUl1Mk1nXeZ7TB2hFaNtmNK_Kh2iVFJK1lNRn6EkI-zwnjJHiMTqjLauaui1X6PulF33UdodvdRywdfbntx9hltfgj6J3Lobo5DXWVnoQAQJW3s27IeLoDHhhJaQZ3jh_MHPA4gaMEVbg7RrH4UTiaTgE7YzbaSkMFlbhTjs5wLj0aj-HOIKN4Sl61AsT4Nnde46-vH_3efMh2366_Lh5u80kpSXNQHV9TUVeQFUqqSpKml6V0NZJ6jolqgJEwYCptld1w2pQhehbqElDZC2EoOfozeI7zd0ISqa_vTB88noU_sCd0PzvidUD37kbTgijBSnz5PDqzsG7rzOEyEcd5Ol0cHPglJSMFYy0RUJf_oPu3extuu9ItaSoqqZJ1OuFkt6F4KG_34bk_BgyTyHzU8iJffHn-vfk71QTcLEAt9rA4f9O_Opqu1j-Ar7Dt3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149125588</pqid></control><display><type>article</type><title>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moine, Amedeo ; Chitarra, Walter ; Nerva, Luca ; Agliassa, Chiara ; Gambino, Giorgio ; Secchi, Francesca ; Pagliarani, Chiara ; Boccacci, Paolo</creator><creatorcontrib>Moine, Amedeo ; Chitarra, Walter ; Nerva, Luca ; Agliassa, Chiara ; Gambino, Giorgio ; Secchi, Francesca ; Pagliarani, Chiara ; Boccacci, Paolo</creatorcontrib><description>Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).
To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes.
Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence.
Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.</description><identifier>ISSN: 0031-9317</identifier><identifier>ISSN: 1399-3054</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.70003</identifier><identifier>PMID: 39658794</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Adaptability ; Adaptation ; Adaptation, Physiological - genetics ; Corylus - genetics ; Corylus - physiology ; Corylus avellana ; Cultivars ; Dehydration ; Drought Resistance ; Droughts ; Environmental stress ; Fruit crops ; Gas exchange ; Gene Expression Regulation, Plant ; Genes ; Genotype ; Genotypes ; Grafting ; Hazelnuts ; Leaves ; Molecular modelling ; Original Research ; Physiology ; Plant layout ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Roots - genetics ; Plant Roots - physiology ; Plants (botany) ; Proline ; Proline - metabolism ; Recovery ; Rehydration ; Rootstocks ; Stress response ; Stress, Physiological ; Water - metabolism ; Water - physiology ; Water deficit ; Water potential ; Water stress ; Water use ; Water use efficiency</subject><ispartof>Physiologia plantarum, 2024-11, Vol.176 (6), p.e70003-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3343-edbf73a02e54dcd5318fd4e97a02bbda52ea26e6d9fd7867ed2af9e7181c7aaa3</cites><orcidid>0000-0002-2324-9760 ; 0000-0003-1590-4478 ; 0000-0002-5382-3794 ; 0000-0001-5009-5798 ; 0000-0003-4656-6192 ; 0000-0002-3161-1643 ; 0000-0001-8574-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.70003$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.70003$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39658794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moine, Amedeo</creatorcontrib><creatorcontrib>Chitarra, Walter</creatorcontrib><creatorcontrib>Nerva, Luca</creatorcontrib><creatorcontrib>Agliassa, Chiara</creatorcontrib><creatorcontrib>Gambino, Giorgio</creatorcontrib><creatorcontrib>Secchi, Francesca</creatorcontrib><creatorcontrib>Pagliarani, Chiara</creatorcontrib><creatorcontrib>Boccacci, Paolo</creatorcontrib><title>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).
To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes.
Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence.
Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Adaptability</subject><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Corylus - genetics</subject><subject>Corylus - physiology</subject><subject>Corylus avellana</subject><subject>Cultivars</subject><subject>Dehydration</subject><subject>Drought Resistance</subject><subject>Droughts</subject><subject>Environmental stress</subject><subject>Fruit crops</subject><subject>Gas exchange</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Grafting</subject><subject>Hazelnuts</subject><subject>Leaves</subject><subject>Molecular modelling</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Plant layout</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Plants (botany)</subject><subject>Proline</subject><subject>Proline - metabolism</subject><subject>Recovery</subject><subject>Rehydration</subject><subject>Rootstocks</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Water - metabolism</subject><subject>Water - physiology</subject><subject>Water deficit</subject><subject>Water potential</subject><subject>Water stress</subject><subject>Water use</subject><subject>Water use efficiency</subject><issn>0031-9317</issn><issn>1399-3054</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkG0cJ05yQmgFBWkleoCz5diTjbeOHWyn1d54AA48I0-Cd1MqQGIu1vzz6feMfoSek3xNUl1Mk1nXeZ7TB2hFaNtmNK_Kh2iVFJK1lNRn6EkI-zwnjJHiMTqjLauaui1X6PulF33UdodvdRywdfbntx9hltfgj6J3Lobo5DXWVnoQAQJW3s27IeLoDHhhJaQZ3jh_MHPA4gaMEVbg7RrH4UTiaTgE7YzbaSkMFlbhTjs5wLj0aj-HOIKN4Sl61AsT4Nnde46-vH_3efMh2366_Lh5u80kpSXNQHV9TUVeQFUqqSpKml6V0NZJ6jolqgJEwYCptld1w2pQhehbqElDZC2EoOfozeI7zd0ISqa_vTB88noU_sCd0PzvidUD37kbTgijBSnz5PDqzsG7rzOEyEcd5Ol0cHPglJSMFYy0RUJf_oPu3extuu9ItaSoqqZJ1OuFkt6F4KG_34bk_BgyTyHzU8iJffHn-vfk71QTcLEAt9rA4f9O_Opqu1j-Ar7Dt3k</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Moine, Amedeo</creator><creator>Chitarra, Walter</creator><creator>Nerva, Luca</creator><creator>Agliassa, Chiara</creator><creator>Gambino, Giorgio</creator><creator>Secchi, Francesca</creator><creator>Pagliarani, Chiara</creator><creator>Boccacci, Paolo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2324-9760</orcidid><orcidid>https://orcid.org/0000-0003-1590-4478</orcidid><orcidid>https://orcid.org/0000-0002-5382-3794</orcidid><orcidid>https://orcid.org/0000-0001-5009-5798</orcidid><orcidid>https://orcid.org/0000-0003-4656-6192</orcidid><orcidid>https://orcid.org/0000-0002-3161-1643</orcidid><orcidid>https://orcid.org/0000-0001-8574-0478</orcidid></search><sort><creationdate>202411</creationdate><title>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</title><author>Moine, Amedeo ; Chitarra, Walter ; Nerva, Luca ; Agliassa, Chiara ; Gambino, Giorgio ; Secchi, Francesca ; Pagliarani, Chiara ; Boccacci, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-edbf73a02e54dcd5318fd4e97a02bbda52ea26e6d9fd7867ed2af9e7181c7aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Adaptability</topic><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Corylus - genetics</topic><topic>Corylus - physiology</topic><topic>Corylus avellana</topic><topic>Cultivars</topic><topic>Dehydration</topic><topic>Drought Resistance</topic><topic>Droughts</topic><topic>Environmental stress</topic><topic>Fruit crops</topic><topic>Gas exchange</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Grafting</topic><topic>Hazelnuts</topic><topic>Leaves</topic><topic>Molecular modelling</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Plant layout</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Plants (botany)</topic><topic>Proline</topic><topic>Proline - metabolism</topic><topic>Recovery</topic><topic>Rehydration</topic><topic>Rootstocks</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Water - metabolism</topic><topic>Water - physiology</topic><topic>Water deficit</topic><topic>Water potential</topic><topic>Water stress</topic><topic>Water use</topic><topic>Water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moine, Amedeo</creatorcontrib><creatorcontrib>Chitarra, Walter</creatorcontrib><creatorcontrib>Nerva, Luca</creatorcontrib><creatorcontrib>Agliassa, Chiara</creatorcontrib><creatorcontrib>Gambino, Giorgio</creatorcontrib><creatorcontrib>Secchi, Francesca</creatorcontrib><creatorcontrib>Pagliarani, Chiara</creatorcontrib><creatorcontrib>Boccacci, Paolo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moine, Amedeo</au><au>Chitarra, Walter</au><au>Nerva, Luca</au><au>Agliassa, Chiara</au><au>Gambino, Giorgio</au><au>Secchi, Francesca</au><au>Pagliarani, Chiara</au><au>Boccacci, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2024-11</date><risdate>2024</risdate><volume>176</volume><issue>6</issue><spage>e70003</spage><epage>n/a</epage><pages>e70003-n/a</pages><issn>0031-9317</issn><issn>1399-3054</issn><eissn>1399-3054</eissn><abstract>Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).
To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes.
Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence.
Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>39658794</pmid><doi>10.1111/ppl.70003</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2324-9760</orcidid><orcidid>https://orcid.org/0000-0003-1590-4478</orcidid><orcidid>https://orcid.org/0000-0002-5382-3794</orcidid><orcidid>https://orcid.org/0000-0001-5009-5798</orcidid><orcidid>https://orcid.org/0000-0003-4656-6192</orcidid><orcidid>https://orcid.org/0000-0002-3161-1643</orcidid><orcidid>https://orcid.org/0000-0001-8574-0478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2024-11, Vol.176 (6), p.e70003-n/a |
issn | 0031-9317 1399-3054 1399-3054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632140 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Abscisic acid Abscisic Acid - metabolism Adaptability Adaptation Adaptation, Physiological - genetics Corylus - genetics Corylus - physiology Corylus avellana Cultivars Dehydration Drought Resistance Droughts Environmental stress Fruit crops Gas exchange Gene Expression Regulation, Plant Genes Genotype Genotypes Grafting Hazelnuts Leaves Molecular modelling Original Research Physiology Plant layout Plant Leaves - genetics Plant Leaves - physiology Plant Roots - genetics Plant Roots - physiology Plants (botany) Proline Proline - metabolism Recovery Rehydration Rootstocks Stress response Stress, Physiological Water - metabolism Water - physiology Water deficit Water potential Water stress Water use Water use efficiency |
title | Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20with%20non%E2%80%90suckering%20rootstock%20increases%20drought%20tolerance%20in%20Corylus%20avellana%20L.%20through%20physiological%20and%20biochemical%20adjustments&rft.jtitle=Physiologia%20plantarum&rft.au=Moine,%20Amedeo&rft.date=2024-11&rft.volume=176&rft.issue=6&rft.spage=e70003&rft.epage=n/a&rft.pages=e70003-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.70003&rft_dat=%3Cproquest_pubme%3E3149125588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149125588&rft_id=info:pmid/39658794&rfr_iscdi=true |