Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments

Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2024-11, Vol.176 (6), p.e70003-n/a
Hauptverfasser: Moine, Amedeo, Chitarra, Walter, Nerva, Luca, Agliassa, Chiara, Gambino, Giorgio, Secchi, Francesca, Pagliarani, Chiara, Boccacci, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e70003
container_title Physiologia plantarum
container_volume 176
creator Moine, Amedeo
Chitarra, Walter
Nerva, Luca
Agliassa, Chiara
Gambino, Giorgio
Secchi, Francesca
Pagliarani, Chiara
Boccacci, Paolo
description Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.
doi_str_mv 10.1111/ppl.70003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149125588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-edbf73a02e54dcd5318fd4e97a02bbda52ea26e6d9fd7867ed2af9e7181c7aaa3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkG0cJ05yQmgFBWkleoCz5diTjbeOHWyn1d54AA48I0-Cd1MqQGIu1vzz6feMfoSek3xNUl1Mk1nXeZ7TB2hFaNtmNK_Kh2iVFJK1lNRn6EkI-zwnjJHiMTqjLauaui1X6PulF33UdodvdRywdfbntx9hltfgj6J3Lobo5DXWVnoQAQJW3s27IeLoDHhhJaQZ3jh_MHPA4gaMEVbg7RrH4UTiaTgE7YzbaSkMFlbhTjs5wLj0aj-HOIKN4Sl61AsT4Nnde46-vH_3efMh2366_Lh5u80kpSXNQHV9TUVeQFUqqSpKml6V0NZJ6jolqgJEwYCptld1w2pQhehbqElDZC2EoOfozeI7zd0ISqa_vTB88noU_sCd0PzvidUD37kbTgijBSnz5PDqzsG7rzOEyEcd5Ol0cHPglJSMFYy0RUJf_oPu3extuu9ItaSoqqZJ1OuFkt6F4KG_34bk_BgyTyHzU8iJffHn-vfk71QTcLEAt9rA4f9O_Opqu1j-Ar7Dt3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149125588</pqid></control><display><type>article</type><title>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moine, Amedeo ; Chitarra, Walter ; Nerva, Luca ; Agliassa, Chiara ; Gambino, Giorgio ; Secchi, Francesca ; Pagliarani, Chiara ; Boccacci, Paolo</creator><creatorcontrib>Moine, Amedeo ; Chitarra, Walter ; Nerva, Luca ; Agliassa, Chiara ; Gambino, Giorgio ; Secchi, Francesca ; Pagliarani, Chiara ; Boccacci, Paolo</creatorcontrib><description>Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.</description><identifier>ISSN: 0031-9317</identifier><identifier>ISSN: 1399-3054</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.70003</identifier><identifier>PMID: 39658794</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Adaptability ; Adaptation ; Adaptation, Physiological - genetics ; Corylus - genetics ; Corylus - physiology ; Corylus avellana ; Cultivars ; Dehydration ; Drought Resistance ; Droughts ; Environmental stress ; Fruit crops ; Gas exchange ; Gene Expression Regulation, Plant ; Genes ; Genotype ; Genotypes ; Grafting ; Hazelnuts ; Leaves ; Molecular modelling ; Original Research ; Physiology ; Plant layout ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Roots - genetics ; Plant Roots - physiology ; Plants (botany) ; Proline ; Proline - metabolism ; Recovery ; Rehydration ; Rootstocks ; Stress response ; Stress, Physiological ; Water - metabolism ; Water - physiology ; Water deficit ; Water potential ; Water stress ; Water use ; Water use efficiency</subject><ispartof>Physiologia plantarum, 2024-11, Vol.176 (6), p.e70003-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2024 The Author(s). Physiologia Plantarum published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3343-edbf73a02e54dcd5318fd4e97a02bbda52ea26e6d9fd7867ed2af9e7181c7aaa3</cites><orcidid>0000-0002-2324-9760 ; 0000-0003-1590-4478 ; 0000-0002-5382-3794 ; 0000-0001-5009-5798 ; 0000-0003-4656-6192 ; 0000-0002-3161-1643 ; 0000-0001-8574-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.70003$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.70003$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39658794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moine, Amedeo</creatorcontrib><creatorcontrib>Chitarra, Walter</creatorcontrib><creatorcontrib>Nerva, Luca</creatorcontrib><creatorcontrib>Agliassa, Chiara</creatorcontrib><creatorcontrib>Gambino, Giorgio</creatorcontrib><creatorcontrib>Secchi, Francesca</creatorcontrib><creatorcontrib>Pagliarani, Chiara</creatorcontrib><creatorcontrib>Boccacci, Paolo</creatorcontrib><title>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Adaptability</subject><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Corylus - genetics</subject><subject>Corylus - physiology</subject><subject>Corylus avellana</subject><subject>Cultivars</subject><subject>Dehydration</subject><subject>Drought Resistance</subject><subject>Droughts</subject><subject>Environmental stress</subject><subject>Fruit crops</subject><subject>Gas exchange</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Grafting</subject><subject>Hazelnuts</subject><subject>Leaves</subject><subject>Molecular modelling</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Plant layout</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Plants (botany)</subject><subject>Proline</subject><subject>Proline - metabolism</subject><subject>Recovery</subject><subject>Rehydration</subject><subject>Rootstocks</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Water - metabolism</subject><subject>Water - physiology</subject><subject>Water deficit</subject><subject>Water potential</subject><subject>Water stress</subject><subject>Water use</subject><subject>Water use efficiency</subject><issn>0031-9317</issn><issn>1399-3054</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkG0cJ05yQmgFBWkleoCz5diTjbeOHWyn1d54AA48I0-Cd1MqQGIu1vzz6feMfoSek3xNUl1Mk1nXeZ7TB2hFaNtmNK_Kh2iVFJK1lNRn6EkI-zwnjJHiMTqjLauaui1X6PulF33UdodvdRywdfbntx9hltfgj6J3Lobo5DXWVnoQAQJW3s27IeLoDHhhJaQZ3jh_MHPA4gaMEVbg7RrH4UTiaTgE7YzbaSkMFlbhTjs5wLj0aj-HOIKN4Sl61AsT4Nnde46-vH_3efMh2366_Lh5u80kpSXNQHV9TUVeQFUqqSpKml6V0NZJ6jolqgJEwYCptld1w2pQhehbqElDZC2EoOfozeI7zd0ISqa_vTB88noU_sCd0PzvidUD37kbTgijBSnz5PDqzsG7rzOEyEcd5Ol0cHPglJSMFYy0RUJf_oPu3extuu9ItaSoqqZJ1OuFkt6F4KG_34bk_BgyTyHzU8iJffHn-vfk71QTcLEAt9rA4f9O_Opqu1j-Ar7Dt3k</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Moine, Amedeo</creator><creator>Chitarra, Walter</creator><creator>Nerva, Luca</creator><creator>Agliassa, Chiara</creator><creator>Gambino, Giorgio</creator><creator>Secchi, Francesca</creator><creator>Pagliarani, Chiara</creator><creator>Boccacci, Paolo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2324-9760</orcidid><orcidid>https://orcid.org/0000-0003-1590-4478</orcidid><orcidid>https://orcid.org/0000-0002-5382-3794</orcidid><orcidid>https://orcid.org/0000-0001-5009-5798</orcidid><orcidid>https://orcid.org/0000-0003-4656-6192</orcidid><orcidid>https://orcid.org/0000-0002-3161-1643</orcidid><orcidid>https://orcid.org/0000-0001-8574-0478</orcidid></search><sort><creationdate>202411</creationdate><title>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</title><author>Moine, Amedeo ; Chitarra, Walter ; Nerva, Luca ; Agliassa, Chiara ; Gambino, Giorgio ; Secchi, Francesca ; Pagliarani, Chiara ; Boccacci, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-edbf73a02e54dcd5318fd4e97a02bbda52ea26e6d9fd7867ed2af9e7181c7aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Adaptability</topic><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Corylus - genetics</topic><topic>Corylus - physiology</topic><topic>Corylus avellana</topic><topic>Cultivars</topic><topic>Dehydration</topic><topic>Drought Resistance</topic><topic>Droughts</topic><topic>Environmental stress</topic><topic>Fruit crops</topic><topic>Gas exchange</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Grafting</topic><topic>Hazelnuts</topic><topic>Leaves</topic><topic>Molecular modelling</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Plant layout</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Plants (botany)</topic><topic>Proline</topic><topic>Proline - metabolism</topic><topic>Recovery</topic><topic>Rehydration</topic><topic>Rootstocks</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Water - metabolism</topic><topic>Water - physiology</topic><topic>Water deficit</topic><topic>Water potential</topic><topic>Water stress</topic><topic>Water use</topic><topic>Water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moine, Amedeo</creatorcontrib><creatorcontrib>Chitarra, Walter</creatorcontrib><creatorcontrib>Nerva, Luca</creatorcontrib><creatorcontrib>Agliassa, Chiara</creatorcontrib><creatorcontrib>Gambino, Giorgio</creatorcontrib><creatorcontrib>Secchi, Francesca</creatorcontrib><creatorcontrib>Pagliarani, Chiara</creatorcontrib><creatorcontrib>Boccacci, Paolo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moine, Amedeo</au><au>Chitarra, Walter</au><au>Nerva, Luca</au><au>Agliassa, Chiara</au><au>Gambino, Giorgio</au><au>Secchi, Francesca</au><au>Pagliarani, Chiara</au><au>Boccacci, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2024-11</date><risdate>2024</risdate><volume>176</volume><issue>6</issue><spage>e70003</spage><epage>n/a</epage><pages>e70003-n/a</pages><issn>0031-9317</issn><issn>1399-3054</issn><eissn>1399-3054</eissn><abstract>Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>39658794</pmid><doi>10.1111/ppl.70003</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2324-9760</orcidid><orcidid>https://orcid.org/0000-0003-1590-4478</orcidid><orcidid>https://orcid.org/0000-0002-5382-3794</orcidid><orcidid>https://orcid.org/0000-0001-5009-5798</orcidid><orcidid>https://orcid.org/0000-0003-4656-6192</orcidid><orcidid>https://orcid.org/0000-0002-3161-1643</orcidid><orcidid>https://orcid.org/0000-0001-8574-0478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2024-11, Vol.176 (6), p.e70003-n/a
issn 0031-9317
1399-3054
1399-3054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632140
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Abscisic acid
Abscisic Acid - metabolism
Adaptability
Adaptation
Adaptation, Physiological - genetics
Corylus - genetics
Corylus - physiology
Corylus avellana
Cultivars
Dehydration
Drought Resistance
Droughts
Environmental stress
Fruit crops
Gas exchange
Gene Expression Regulation, Plant
Genes
Genotype
Genotypes
Grafting
Hazelnuts
Leaves
Molecular modelling
Original Research
Physiology
Plant layout
Plant Leaves - genetics
Plant Leaves - physiology
Plant Roots - genetics
Plant Roots - physiology
Plants (botany)
Proline
Proline - metabolism
Recovery
Rehydration
Rootstocks
Stress response
Stress, Physiological
Water - metabolism
Water - physiology
Water deficit
Water potential
Water stress
Water use
Water use efficiency
title Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20with%20non%E2%80%90suckering%20rootstock%20increases%20drought%20tolerance%20in%20Corylus%20avellana%20L.%20through%20physiological%20and%20biochemical%20adjustments&rft.jtitle=Physiologia%20plantarum&rft.au=Moine,%20Amedeo&rft.date=2024-11&rft.volume=176&rft.issue=6&rft.spage=e70003&rft.epage=n/a&rft.pages=e70003-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.70003&rft_dat=%3Cproquest_pubme%3E3149125588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149125588&rft_id=info:pmid/39658794&rfr_iscdi=true