A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia

The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PNAS nexus 2024-12, Vol.3 (12), p.pgae545
Hauptverfasser: Picou, Theodore J, Luo, Haibei, Polackwich, Robert J, Gabilondo, Beatriz B, McAllister, Ryan G, Gagnon, David A, Powers, Thomas R, Elmendorf, Heidi G, Urbach, Jeffrey S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page pgae545
container_title PNAS nexus
container_volume 3
creator Picou, Theodore J
Luo, Haibei
Polackwich, Robert J
Gabilondo, Beatriz B
McAllister, Ryan G
Gagnon, David A
Powers, Thomas R
Elmendorf, Heidi G
Urbach, Jeffrey S
description The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe , a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.
doi_str_mv 10.1093/pnasnexus/pgae545
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11631216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146627644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-a78b7184480be786389efb47698539834f764bd000a42d74153ca21890b95f0c3</originalsourceid><addsrcrecordid>eNpVUU1PwzAMjRCITWM_gAvKkctYvpqkXNA0wUCaBIdxjtwu3YKStjTtBP-eThsTXGxLfraf30PompI7SlI-rUuIpf3q4rTegE1EcoaGTCVsIhPBzv_UAzSO8YMQwpSiVCSXaMBTKQmRdIjeZrisdtbjYPMtlC4GXBU4uLypMgceQ9tCvg22bO_xamtx4WFjvYcG112o99iFg2btAHsImXdwhS4K8NGOj3mE3p8eV_PnyfJ18TKfLSc506ydgNKZoloITTKrtOQ6tUUmlEx1wlPNRaGkyNY9axBsrQRNeA6M6pRkaVKQnI_Qw2Fv3WXBrvOeYQPe1I0L0HybCpz53ynd1myqnaFUcsr6MEK3xw1N9dnZ2JrgYr5_rrRVFw2nQkrW0xA9lB6gvSwxNrY43aHE7N0wJzfM0Y1-5uYvwdPEr_b8B6KmiXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146627644</pqid></control><display><type>article</type><title>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Picou, Theodore J ; Luo, Haibei ; Polackwich, Robert J ; Gabilondo, Beatriz B ; McAllister, Ryan G ; Gagnon, David A ; Powers, Thomas R ; Elmendorf, Heidi G ; Urbach, Jeffrey S</creator><contributor>Kanso, Eva</contributor><creatorcontrib>Picou, Theodore J ; Luo, Haibei ; Polackwich, Robert J ; Gabilondo, Beatriz B ; McAllister, Ryan G ; Gagnon, David A ; Powers, Thomas R ; Elmendorf, Heidi G ; Urbach, Jeffrey S ; Kanso, Eva</creatorcontrib><description>The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe , a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.</description><identifier>ISSN: 2752-6542</identifier><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgae545</identifier><identifier>PMID: 39660061</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biological, Health, and Medical Sciences</subject><ispartof>PNAS nexus, 2024-12, Vol.3 (12), p.pgae545</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-a78b7184480be786389efb47698539834f764bd000a42d74153ca21890b95f0c3</cites><orcidid>0000-0002-1593-520X ; 0000-0002-5338-7611 ; 0009-0000-7024-9774 ; 0009-0002-2025-5759 ; 0009-0006-9334-0849 ; 0000-0003-3432-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631216/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631216/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39660061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kanso, Eva</contributor><creatorcontrib>Picou, Theodore J</creatorcontrib><creatorcontrib>Luo, Haibei</creatorcontrib><creatorcontrib>Polackwich, Robert J</creatorcontrib><creatorcontrib>Gabilondo, Beatriz B</creatorcontrib><creatorcontrib>McAllister, Ryan G</creatorcontrib><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Powers, Thomas R</creatorcontrib><creatorcontrib>Elmendorf, Heidi G</creatorcontrib><creatorcontrib>Urbach, Jeffrey S</creatorcontrib><title>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</title><title>PNAS nexus</title><addtitle>PNAS Nexus</addtitle><description>The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe , a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.</description><subject>Biological, Health, and Medical Sciences</subject><issn>2752-6542</issn><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PwzAMjRCITWM_gAvKkctYvpqkXNA0wUCaBIdxjtwu3YKStjTtBP-eThsTXGxLfraf30PompI7SlI-rUuIpf3q4rTegE1EcoaGTCVsIhPBzv_UAzSO8YMQwpSiVCSXaMBTKQmRdIjeZrisdtbjYPMtlC4GXBU4uLypMgceQ9tCvg22bO_xamtx4WFjvYcG112o99iFg2btAHsImXdwhS4K8NGOj3mE3p8eV_PnyfJ18TKfLSc506ydgNKZoloITTKrtOQ6tUUmlEx1wlPNRaGkyNY9axBsrQRNeA6M6pRkaVKQnI_Qw2Fv3WXBrvOeYQPe1I0L0HybCpz53ynd1myqnaFUcsr6MEK3xw1N9dnZ2JrgYr5_rrRVFw2nQkrW0xA9lB6gvSwxNrY43aHE7N0wJzfM0Y1-5uYvwdPEr_b8B6KmiXA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Picou, Theodore J</creator><creator>Luo, Haibei</creator><creator>Polackwich, Robert J</creator><creator>Gabilondo, Beatriz B</creator><creator>McAllister, Ryan G</creator><creator>Gagnon, David A</creator><creator>Powers, Thomas R</creator><creator>Elmendorf, Heidi G</creator><creator>Urbach, Jeffrey S</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1593-520X</orcidid><orcidid>https://orcid.org/0000-0002-5338-7611</orcidid><orcidid>https://orcid.org/0009-0000-7024-9774</orcidid><orcidid>https://orcid.org/0009-0002-2025-5759</orcidid><orcidid>https://orcid.org/0009-0006-9334-0849</orcidid><orcidid>https://orcid.org/0000-0003-3432-8226</orcidid></search><sort><creationdate>202412</creationdate><title>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</title><author>Picou, Theodore J ; Luo, Haibei ; Polackwich, Robert J ; Gabilondo, Beatriz B ; McAllister, Ryan G ; Gagnon, David A ; Powers, Thomas R ; Elmendorf, Heidi G ; Urbach, Jeffrey S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-a78b7184480be786389efb47698539834f764bd000a42d74153ca21890b95f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological, Health, and Medical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picou, Theodore J</creatorcontrib><creatorcontrib>Luo, Haibei</creatorcontrib><creatorcontrib>Polackwich, Robert J</creatorcontrib><creatorcontrib>Gabilondo, Beatriz B</creatorcontrib><creatorcontrib>McAllister, Ryan G</creatorcontrib><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Powers, Thomas R</creatorcontrib><creatorcontrib>Elmendorf, Heidi G</creatorcontrib><creatorcontrib>Urbach, Jeffrey S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PNAS nexus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picou, Theodore J</au><au>Luo, Haibei</au><au>Polackwich, Robert J</au><au>Gabilondo, Beatriz B</au><au>McAllister, Ryan G</au><au>Gagnon, David A</au><au>Powers, Thomas R</au><au>Elmendorf, Heidi G</au><au>Urbach, Jeffrey S</au><au>Kanso, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</atitle><jtitle>PNAS nexus</jtitle><addtitle>PNAS Nexus</addtitle><date>2024-12</date><risdate>2024</risdate><volume>3</volume><issue>12</issue><spage>pgae545</spage><pages>pgae545-</pages><issn>2752-6542</issn><eissn>2752-6542</eissn><abstract>The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe , a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39660061</pmid><doi>10.1093/pnasnexus/pgae545</doi><orcidid>https://orcid.org/0000-0002-1593-520X</orcidid><orcidid>https://orcid.org/0000-0002-5338-7611</orcidid><orcidid>https://orcid.org/0009-0000-7024-9774</orcidid><orcidid>https://orcid.org/0009-0002-2025-5759</orcidid><orcidid>https://orcid.org/0009-0006-9334-0849</orcidid><orcidid>https://orcid.org/0000-0003-3432-8226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2752-6542
ispartof PNAS nexus, 2024-12, Vol.3 (12), p.pgae545
issn 2752-6542
2752-6542
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11631216
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biological, Health, and Medical Sciences
title A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20mechanism%20of%20microbial%20attachment:%20The%20flagellar%20pump%20of%20Giardia%20lamblia&rft.jtitle=PNAS%20nexus&rft.au=Picou,%20Theodore%20J&rft.date=2024-12&rft.volume=3&rft.issue=12&rft.spage=pgae545&rft.pages=pgae545-&rft.issn=2752-6542&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgae545&rft_dat=%3Cproquest_pubme%3E3146627644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146627644&rft_id=info:pmid/39660061&rfr_iscdi=true