A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia
The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydr...
Gespeichert in:
Veröffentlicht in: | PNAS nexus 2024-12, Vol.3 (12), p.pgae545 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | pgae545 |
container_title | PNAS nexus |
container_volume | 3 |
creator | Picou, Theodore J Luo, Haibei Polackwich, Robert J Gabilondo, Beatriz B McAllister, Ryan G Gagnon, David A Powers, Thomas R Elmendorf, Heidi G Urbach, Jeffrey S |
description | The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe
, a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of
flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows
to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes. |
doi_str_mv | 10.1093/pnasnexus/pgae545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11631216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146627644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-a78b7184480be786389efb47698539834f764bd000a42d74153ca21890b95f0c3</originalsourceid><addsrcrecordid>eNpVUU1PwzAMjRCITWM_gAvKkctYvpqkXNA0wUCaBIdxjtwu3YKStjTtBP-eThsTXGxLfraf30PompI7SlI-rUuIpf3q4rTegE1EcoaGTCVsIhPBzv_UAzSO8YMQwpSiVCSXaMBTKQmRdIjeZrisdtbjYPMtlC4GXBU4uLypMgceQ9tCvg22bO_xamtx4WFjvYcG112o99iFg2btAHsImXdwhS4K8NGOj3mE3p8eV_PnyfJ18TKfLSc506ydgNKZoloITTKrtOQ6tUUmlEx1wlPNRaGkyNY9axBsrQRNeA6M6pRkaVKQnI_Qw2Fv3WXBrvOeYQPe1I0L0HybCpz53ynd1myqnaFUcsr6MEK3xw1N9dnZ2JrgYr5_rrRVFw2nQkrW0xA9lB6gvSwxNrY43aHE7N0wJzfM0Y1-5uYvwdPEr_b8B6KmiXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146627644</pqid></control><display><type>article</type><title>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Picou, Theodore J ; Luo, Haibei ; Polackwich, Robert J ; Gabilondo, Beatriz B ; McAllister, Ryan G ; Gagnon, David A ; Powers, Thomas R ; Elmendorf, Heidi G ; Urbach, Jeffrey S</creator><contributor>Kanso, Eva</contributor><creatorcontrib>Picou, Theodore J ; Luo, Haibei ; Polackwich, Robert J ; Gabilondo, Beatriz B ; McAllister, Ryan G ; Gagnon, David A ; Powers, Thomas R ; Elmendorf, Heidi G ; Urbach, Jeffrey S ; Kanso, Eva</creatorcontrib><description>The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe
, a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of
flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows
to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.</description><identifier>ISSN: 2752-6542</identifier><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgae545</identifier><identifier>PMID: 39660061</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biological, Health, and Medical Sciences</subject><ispartof>PNAS nexus, 2024-12, Vol.3 (12), p.pgae545</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-a78b7184480be786389efb47698539834f764bd000a42d74153ca21890b95f0c3</cites><orcidid>0000-0002-1593-520X ; 0000-0002-5338-7611 ; 0009-0000-7024-9774 ; 0009-0002-2025-5759 ; 0009-0006-9334-0849 ; 0000-0003-3432-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631216/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631216/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39660061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kanso, Eva</contributor><creatorcontrib>Picou, Theodore J</creatorcontrib><creatorcontrib>Luo, Haibei</creatorcontrib><creatorcontrib>Polackwich, Robert J</creatorcontrib><creatorcontrib>Gabilondo, Beatriz B</creatorcontrib><creatorcontrib>McAllister, Ryan G</creatorcontrib><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Powers, Thomas R</creatorcontrib><creatorcontrib>Elmendorf, Heidi G</creatorcontrib><creatorcontrib>Urbach, Jeffrey S</creatorcontrib><title>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</title><title>PNAS nexus</title><addtitle>PNAS Nexus</addtitle><description>The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe
, a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of
flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows
to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.</description><subject>Biological, Health, and Medical Sciences</subject><issn>2752-6542</issn><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PwzAMjRCITWM_gAvKkctYvpqkXNA0wUCaBIdxjtwu3YKStjTtBP-eThsTXGxLfraf30PompI7SlI-rUuIpf3q4rTegE1EcoaGTCVsIhPBzv_UAzSO8YMQwpSiVCSXaMBTKQmRdIjeZrisdtbjYPMtlC4GXBU4uLypMgceQ9tCvg22bO_xamtx4WFjvYcG112o99iFg2btAHsImXdwhS4K8NGOj3mE3p8eV_PnyfJ18TKfLSc506ydgNKZoloITTKrtOQ6tUUmlEx1wlPNRaGkyNY9axBsrQRNeA6M6pRkaVKQnI_Qw2Fv3WXBrvOeYQPe1I0L0HybCpz53ynd1myqnaFUcsr6MEK3xw1N9dnZ2JrgYr5_rrRVFw2nQkrW0xA9lB6gvSwxNrY43aHE7N0wJzfM0Y1-5uYvwdPEr_b8B6KmiXA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Picou, Theodore J</creator><creator>Luo, Haibei</creator><creator>Polackwich, Robert J</creator><creator>Gabilondo, Beatriz B</creator><creator>McAllister, Ryan G</creator><creator>Gagnon, David A</creator><creator>Powers, Thomas R</creator><creator>Elmendorf, Heidi G</creator><creator>Urbach, Jeffrey S</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1593-520X</orcidid><orcidid>https://orcid.org/0000-0002-5338-7611</orcidid><orcidid>https://orcid.org/0009-0000-7024-9774</orcidid><orcidid>https://orcid.org/0009-0002-2025-5759</orcidid><orcidid>https://orcid.org/0009-0006-9334-0849</orcidid><orcidid>https://orcid.org/0000-0003-3432-8226</orcidid></search><sort><creationdate>202412</creationdate><title>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</title><author>Picou, Theodore J ; Luo, Haibei ; Polackwich, Robert J ; Gabilondo, Beatriz B ; McAllister, Ryan G ; Gagnon, David A ; Powers, Thomas R ; Elmendorf, Heidi G ; Urbach, Jeffrey S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-a78b7184480be786389efb47698539834f764bd000a42d74153ca21890b95f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological, Health, and Medical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picou, Theodore J</creatorcontrib><creatorcontrib>Luo, Haibei</creatorcontrib><creatorcontrib>Polackwich, Robert J</creatorcontrib><creatorcontrib>Gabilondo, Beatriz B</creatorcontrib><creatorcontrib>McAllister, Ryan G</creatorcontrib><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Powers, Thomas R</creatorcontrib><creatorcontrib>Elmendorf, Heidi G</creatorcontrib><creatorcontrib>Urbach, Jeffrey S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PNAS nexus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picou, Theodore J</au><au>Luo, Haibei</au><au>Polackwich, Robert J</au><au>Gabilondo, Beatriz B</au><au>McAllister, Ryan G</au><au>Gagnon, David A</au><au>Powers, Thomas R</au><au>Elmendorf, Heidi G</au><au>Urbach, Jeffrey S</au><au>Kanso, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia</atitle><jtitle>PNAS nexus</jtitle><addtitle>PNAS Nexus</addtitle><date>2024-12</date><risdate>2024</risdate><volume>3</volume><issue>12</issue><spage>pgae545</spage><pages>pgae545-</pages><issn>2752-6542</issn><eissn>2752-6542</eissn><abstract>The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe
, a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of
flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows
to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39660061</pmid><doi>10.1093/pnasnexus/pgae545</doi><orcidid>https://orcid.org/0000-0002-1593-520X</orcidid><orcidid>https://orcid.org/0000-0002-5338-7611</orcidid><orcidid>https://orcid.org/0009-0000-7024-9774</orcidid><orcidid>https://orcid.org/0009-0002-2025-5759</orcidid><orcidid>https://orcid.org/0009-0006-9334-0849</orcidid><orcidid>https://orcid.org/0000-0003-3432-8226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2752-6542 |
ispartof | PNAS nexus, 2024-12, Vol.3 (12), p.pgae545 |
issn | 2752-6542 2752-6542 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11631216 |
source | DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biological, Health, and Medical Sciences |
title | A novel mechanism of microbial attachment: The flagellar pump of Giardia lamblia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20mechanism%20of%20microbial%20attachment:%20The%20flagellar%20pump%20of%20Giardia%20lamblia&rft.jtitle=PNAS%20nexus&rft.au=Picou,%20Theodore%20J&rft.date=2024-12&rft.volume=3&rft.issue=12&rft.spage=pgae545&rft.pages=pgae545-&rft.issn=2752-6542&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgae545&rft_dat=%3Cproquest_pubme%3E3146627644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146627644&rft_id=info:pmid/39660061&rfr_iscdi=true |