An expression-directed linear mixed model discovering low-effect genetic variants
Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alt...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2024-04, Vol.226 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Genetics (Austin) |
container_volume | 226 |
creator | Li, Qing Bian, Jiayi Qian, Yanzhao Kossinna, Pathum Gau, Cooper Gordon, Paul M K Zhou, Xiang Guo, Xingyi Yan, Jun Wu, Jingjing Long, Quan |
description | Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases. |
doi_str_mv | 10.1093/genetics/iyae018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11630775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922952648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-afbb453e14cc01094f99d9db1c90c2ac177baf5a2644676ffd3cdbb73f9cfc0f3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaLYWr17kj16WZts9isnKcUvKIig55BNJjWym9RkW9t_b6Qf1NPMMG_evJmH0DXBdwQzOp6Dhd7IMDYbAZjUJ2hIWE7TrKTk9CgfoIsQvjDGJSvqczSgNSV5nddD9DaxCawXHkIwzqbKeJA9qKQ1FoRPOrOORecUtIkyQboVeGPnSet-UtA6YpOdhmQlvBG2D5foTIs2wNUujtDH48P79DmdvT69TCezVNIC96nQTZMXFEguJY7H5JoxxVRDJMMyE5JUVSN0IbIyz8uq1FpRqZqmoppJLbGmI3S_5V0smw6UBNt70fKFN53wG-6E4f871nzyuVtxQkqKq6qIDLc7Bu--lxB63sUToW2FBbcMPGNZxooooI5QvIVK70LwoA97COZ_VvC9FXxnRRy5OdZ3GNj_nv4Cc4GL8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922952648</pqid></control><display><type>article</type><title>An expression-directed linear mixed model discovering low-effect genetic variants</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Li, Qing ; Bian, Jiayi ; Qian, Yanzhao ; Kossinna, Pathum ; Gau, Cooper ; Gordon, Paul M K ; Zhou, Xiang ; Guo, Xingyi ; Yan, Jun ; Wu, Jingjing ; Long, Quan</creator><contributor>Zhao, H</contributor><creatorcontrib>Li, Qing ; Bian, Jiayi ; Qian, Yanzhao ; Kossinna, Pathum ; Gau, Cooper ; Gordon, Paul M K ; Zhou, Xiang ; Guo, Xingyi ; Yan, Jun ; Wu, Jingjing ; Long, Quan ; Zhao, H</creatorcontrib><description>Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyae018</identifier><identifier>PMID: 38314848</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Genome-Wide Association Study ; Humans ; Investigation ; Linear Models ; Models, Genetic ; Multifactorial Inheritance ; Phenotype ; Polymorphism, Single Nucleotide ; Sample Size</subject><ispartof>Genetics (Austin), 2024-04, Vol.226 (4)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-afbb453e14cc01094f99d9db1c90c2ac177baf5a2644676ffd3cdbb73f9cfc0f3</cites><orcidid>0000-0001-5269-1294 ; 0000-0003-3795-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38314848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, H</contributor><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Bian, Jiayi</creatorcontrib><creatorcontrib>Qian, Yanzhao</creatorcontrib><creatorcontrib>Kossinna, Pathum</creatorcontrib><creatorcontrib>Gau, Cooper</creatorcontrib><creatorcontrib>Gordon, Paul M K</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Guo, Xingyi</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><title>An expression-directed linear mixed model discovering low-effect genetic variants</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.</description><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Investigation</subject><subject>Linear Models</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Sample Size</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LAzEQDaLYWr17kj16WZts9isnKcUvKIig55BNJjWym9RkW9t_b6Qf1NPMMG_evJmH0DXBdwQzOp6Dhd7IMDYbAZjUJ2hIWE7TrKTk9CgfoIsQvjDGJSvqczSgNSV5nddD9DaxCawXHkIwzqbKeJA9qKQ1FoRPOrOORecUtIkyQboVeGPnSet-UtA6YpOdhmQlvBG2D5foTIs2wNUujtDH48P79DmdvT69TCezVNIC96nQTZMXFEguJY7H5JoxxVRDJMMyE5JUVSN0IbIyz8uq1FpRqZqmoppJLbGmI3S_5V0smw6UBNt70fKFN53wG-6E4f871nzyuVtxQkqKq6qIDLc7Bu--lxB63sUToW2FBbcMPGNZxooooI5QvIVK70LwoA97COZ_VvC9FXxnRRy5OdZ3GNj_nv4Cc4GL8g</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Li, Qing</creator><creator>Bian, Jiayi</creator><creator>Qian, Yanzhao</creator><creator>Kossinna, Pathum</creator><creator>Gau, Cooper</creator><creator>Gordon, Paul M K</creator><creator>Zhou, Xiang</creator><creator>Guo, Xingyi</creator><creator>Yan, Jun</creator><creator>Wu, Jingjing</creator><creator>Long, Quan</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5269-1294</orcidid><orcidid>https://orcid.org/0000-0003-3795-1873</orcidid></search><sort><creationdate>20240403</creationdate><title>An expression-directed linear mixed model discovering low-effect genetic variants</title><author>Li, Qing ; Bian, Jiayi ; Qian, Yanzhao ; Kossinna, Pathum ; Gau, Cooper ; Gordon, Paul M K ; Zhou, Xiang ; Guo, Xingyi ; Yan, Jun ; Wu, Jingjing ; Long, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-afbb453e14cc01094f99d9db1c90c2ac177baf5a2644676ffd3cdbb73f9cfc0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Investigation</topic><topic>Linear Models</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Bian, Jiayi</creatorcontrib><creatorcontrib>Qian, Yanzhao</creatorcontrib><creatorcontrib>Kossinna, Pathum</creatorcontrib><creatorcontrib>Gau, Cooper</creatorcontrib><creatorcontrib>Gordon, Paul M K</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Guo, Xingyi</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qing</au><au>Bian, Jiayi</au><au>Qian, Yanzhao</au><au>Kossinna, Pathum</au><au>Gau, Cooper</au><au>Gordon, Paul M K</au><au>Zhou, Xiang</au><au>Guo, Xingyi</au><au>Yan, Jun</au><au>Wu, Jingjing</au><au>Long, Quan</au><au>Zhao, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An expression-directed linear mixed model discovering low-effect genetic variants</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2024-04-03</date><risdate>2024</risdate><volume>226</volume><issue>4</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>38314848</pmid><doi>10.1093/genetics/iyae018</doi><orcidid>https://orcid.org/0000-0001-5269-1294</orcidid><orcidid>https://orcid.org/0000-0003-3795-1873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2024-04, Vol.226 (4) |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11630775 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Genome-Wide Association Study Humans Investigation Linear Models Models, Genetic Multifactorial Inheritance Phenotype Polymorphism, Single Nucleotide Sample Size |
title | An expression-directed linear mixed model discovering low-effect genetic variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20expression-directed%20linear%20mixed%20model%20discovering%20low-effect%20genetic%20variants&rft.jtitle=Genetics%20(Austin)&rft.au=Li,%20Qing&rft.date=2024-04-03&rft.volume=226&rft.issue=4&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyae018&rft_dat=%3Cproquest_pubme%3E2922952648%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922952648&rft_id=info:pmid/38314848&rfr_iscdi=true |