An expression-directed linear mixed model discovering low-effect genetic variants

Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2024-04, Vol.226 (4)
Hauptverfasser: Li, Qing, Bian, Jiayi, Qian, Yanzhao, Kossinna, Pathum, Gau, Cooper, Gordon, Paul M K, Zhou, Xiang, Guo, Xingyi, Yan, Jun, Wu, Jingjing, Long, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Genetics (Austin)
container_volume 226
creator Li, Qing
Bian, Jiayi
Qian, Yanzhao
Kossinna, Pathum
Gau, Cooper
Gordon, Paul M K
Zhou, Xiang
Guo, Xingyi
Yan, Jun
Wu, Jingjing
Long, Quan
description Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.
doi_str_mv 10.1093/genetics/iyae018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11630775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922952648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-afbb453e14cc01094f99d9db1c90c2ac177baf5a2644676ffd3cdbb73f9cfc0f3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaLYWr17kj16WZts9isnKcUvKIig55BNJjWym9RkW9t_b6Qf1NPMMG_evJmH0DXBdwQzOp6Dhd7IMDYbAZjUJ2hIWE7TrKTk9CgfoIsQvjDGJSvqczSgNSV5nddD9DaxCawXHkIwzqbKeJA9qKQ1FoRPOrOORecUtIkyQboVeGPnSet-UtA6YpOdhmQlvBG2D5foTIs2wNUujtDH48P79DmdvT69TCezVNIC96nQTZMXFEguJY7H5JoxxVRDJMMyE5JUVSN0IbIyz8uq1FpRqZqmoppJLbGmI3S_5V0smw6UBNt70fKFN53wG-6E4f871nzyuVtxQkqKq6qIDLc7Bu--lxB63sUToW2FBbcMPGNZxooooI5QvIVK70LwoA97COZ_VvC9FXxnRRy5OdZ3GNj_nv4Cc4GL8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922952648</pqid></control><display><type>article</type><title>An expression-directed linear mixed model discovering low-effect genetic variants</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Li, Qing ; Bian, Jiayi ; Qian, Yanzhao ; Kossinna, Pathum ; Gau, Cooper ; Gordon, Paul M K ; Zhou, Xiang ; Guo, Xingyi ; Yan, Jun ; Wu, Jingjing ; Long, Quan</creator><contributor>Zhao, H</contributor><creatorcontrib>Li, Qing ; Bian, Jiayi ; Qian, Yanzhao ; Kossinna, Pathum ; Gau, Cooper ; Gordon, Paul M K ; Zhou, Xiang ; Guo, Xingyi ; Yan, Jun ; Wu, Jingjing ; Long, Quan ; Zhao, H</creatorcontrib><description>Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyae018</identifier><identifier>PMID: 38314848</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Genome-Wide Association Study ; Humans ; Investigation ; Linear Models ; Models, Genetic ; Multifactorial Inheritance ; Phenotype ; Polymorphism, Single Nucleotide ; Sample Size</subject><ispartof>Genetics (Austin), 2024-04, Vol.226 (4)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-afbb453e14cc01094f99d9db1c90c2ac177baf5a2644676ffd3cdbb73f9cfc0f3</cites><orcidid>0000-0001-5269-1294 ; 0000-0003-3795-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38314848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, H</contributor><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Bian, Jiayi</creatorcontrib><creatorcontrib>Qian, Yanzhao</creatorcontrib><creatorcontrib>Kossinna, Pathum</creatorcontrib><creatorcontrib>Gau, Cooper</creatorcontrib><creatorcontrib>Gordon, Paul M K</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Guo, Xingyi</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><title>An expression-directed linear mixed model discovering low-effect genetic variants</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.</description><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Investigation</subject><subject>Linear Models</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Sample Size</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LAzEQDaLYWr17kj16WZts9isnKcUvKIig55BNJjWym9RkW9t_b6Qf1NPMMG_evJmH0DXBdwQzOp6Dhd7IMDYbAZjUJ2hIWE7TrKTk9CgfoIsQvjDGJSvqczSgNSV5nddD9DaxCawXHkIwzqbKeJA9qKQ1FoRPOrOORecUtIkyQboVeGPnSet-UtA6YpOdhmQlvBG2D5foTIs2wNUujtDH48P79DmdvT69TCezVNIC96nQTZMXFEguJY7H5JoxxVRDJMMyE5JUVSN0IbIyz8uq1FpRqZqmoppJLbGmI3S_5V0smw6UBNt70fKFN53wG-6E4f871nzyuVtxQkqKq6qIDLc7Bu--lxB63sUToW2FBbcMPGNZxooooI5QvIVK70LwoA97COZ_VvC9FXxnRRy5OdZ3GNj_nv4Cc4GL8g</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Li, Qing</creator><creator>Bian, Jiayi</creator><creator>Qian, Yanzhao</creator><creator>Kossinna, Pathum</creator><creator>Gau, Cooper</creator><creator>Gordon, Paul M K</creator><creator>Zhou, Xiang</creator><creator>Guo, Xingyi</creator><creator>Yan, Jun</creator><creator>Wu, Jingjing</creator><creator>Long, Quan</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5269-1294</orcidid><orcidid>https://orcid.org/0000-0003-3795-1873</orcidid></search><sort><creationdate>20240403</creationdate><title>An expression-directed linear mixed model discovering low-effect genetic variants</title><author>Li, Qing ; Bian, Jiayi ; Qian, Yanzhao ; Kossinna, Pathum ; Gau, Cooper ; Gordon, Paul M K ; Zhou, Xiang ; Guo, Xingyi ; Yan, Jun ; Wu, Jingjing ; Long, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-afbb453e14cc01094f99d9db1c90c2ac177baf5a2644676ffd3cdbb73f9cfc0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Investigation</topic><topic>Linear Models</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Bian, Jiayi</creatorcontrib><creatorcontrib>Qian, Yanzhao</creatorcontrib><creatorcontrib>Kossinna, Pathum</creatorcontrib><creatorcontrib>Gau, Cooper</creatorcontrib><creatorcontrib>Gordon, Paul M K</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Guo, Xingyi</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Jingjing</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qing</au><au>Bian, Jiayi</au><au>Qian, Yanzhao</au><au>Kossinna, Pathum</au><au>Gau, Cooper</au><au>Gordon, Paul M K</au><au>Zhou, Xiang</au><au>Guo, Xingyi</au><au>Yan, Jun</au><au>Wu, Jingjing</au><au>Long, Quan</au><au>Zhao, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An expression-directed linear mixed model discovering low-effect genetic variants</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2024-04-03</date><risdate>2024</risdate><volume>226</volume><issue>4</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Detecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression. Our protocol, expression-directed linear mixed model, enables the discovery of subtle signals of low-effect variants using moderate sample size. By applying expression-directed linear mixed model to cohorts of around 5,000 individuals with either binary (WTCCC) or quantitative (NFBC1966) traits, we demonstrated its power gain at the low-effect end of the genetic etiology spectrum. In aggregate, the additional low-effect variants detected by expression-directed linear mixed model substantially improved estimation of missing heritability. Expression-directed linear mixed model moves precision medicine forward by accurately detecting the contribution of low-effect genetic variants to human diseases.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>38314848</pmid><doi>10.1093/genetics/iyae018</doi><orcidid>https://orcid.org/0000-0001-5269-1294</orcidid><orcidid>https://orcid.org/0000-0003-3795-1873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2024-04, Vol.226 (4)
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11630775
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Genome-Wide Association Study
Humans
Investigation
Linear Models
Models, Genetic
Multifactorial Inheritance
Phenotype
Polymorphism, Single Nucleotide
Sample Size
title An expression-directed linear mixed model discovering low-effect genetic variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20expression-directed%20linear%20mixed%20model%20discovering%20low-effect%20genetic%20variants&rft.jtitle=Genetics%20(Austin)&rft.au=Li,%20Qing&rft.date=2024-04-03&rft.volume=226&rft.issue=4&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyae018&rft_dat=%3Cproquest_pubme%3E2922952648%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922952648&rft_id=info:pmid/38314848&rfr_iscdi=true