A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations
Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood. Here, we report that oxygen-induced retinopathy...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2024-12, Vol.120 (15), p.1967-1984 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1984 |
---|---|
container_issue | 15 |
container_start_page | 1967 |
container_title | Cardiovascular research |
container_volume | 120 |
creator | Ouarné, Marie Pena, Andreia Ramalho, Daniela Conchinha, Nadine V Costa, Tiago Enjalbert, Romain Figueiredo, Ana M Saraiva, Marta Pimentel Carvalho, Yulia Bernabeu, Miguel O Henao Misikova, Lenka Oh, S Paul Franco, Cláudio A |
description | Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood.
Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts.
Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs. |
doi_str_mv | 10.1093/cvr/cvae160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108389797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-eac3c06e8fb047369d217b764a17ab680f97068a0e2d4c25b31fad636b152d293</originalsourceid><addsrcrecordid>eNpVkc1LJDEQxYO46Ojuae-SoyDtJp3upHMSGfwCYS96DtXpaidLd6JJ94B3__DN6DjooQjF-_GqKo-Q35ydc6bFH7uOuQC5ZHtkwVVdF6Ks6n2yYIw1hRRSHJKjlP7ltq5VdUAOhRasKSuxIG-X1AdfPKHHyVk6hg4HGnq6hmTnASJNq9lPiTrfhzgmGjydVkgtDsO7PKJdgXdpI_V0w8DkMgS-oxFTGOb3NmsQJ4wurNGHOdERhh2cfpIfPQwJf23fY_J4ffWwvC3u_97cLS_vC1tqPRUIVlgmselbVikhdVdy1SpZAVfQyob1WjHZAMOyq2xZt4L30OX7W16XXanFMbn48H2e2xE7i36KMJjn6EaIryaAM98V71bmKawN5zJvoJrscLp1iOFlxjSZ0aXNZ4DHfJYRnDWi0UqrjJ59oDaGlCL2uzmcmU1wJgdntsFl-uTrajv2MynxH-IfmeU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108389797</pqid></control><display><type>article</type><title>A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Ouarné, Marie ; Pena, Andreia ; Ramalho, Daniela ; Conchinha, Nadine V ; Costa, Tiago ; Enjalbert, Romain ; Figueiredo, Ana M ; Saraiva, Marta Pimentel ; Carvalho, Yulia ; Bernabeu, Miguel O ; Henao Misikova, Lenka ; Oh, S Paul ; Franco, Cláudio A</creator><creatorcontrib>Ouarné, Marie ; Pena, Andreia ; Ramalho, Daniela ; Conchinha, Nadine V ; Costa, Tiago ; Enjalbert, Romain ; Figueiredo, Ana M ; Saraiva, Marta Pimentel ; Carvalho, Yulia ; Bernabeu, Miguel O ; Henao Misikova, Lenka ; Oh, S Paul ; Franco, Cláudio A</creatorcontrib><description>Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood.
Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts.
Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.</description><identifier>ISSN: 0008-6363</identifier><identifier>ISSN: 1755-3245</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvae160</identifier><identifier>PMID: 39308243</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Activin Receptors, Type I - genetics ; Activin Receptors, Type I - metabolism ; Activin Receptors, Type II ; Animals ; Arteriovenous Malformations - genetics ; Arteriovenous Malformations - metabolism ; Arteriovenous Malformations - pathology ; Arteriovenous Malformations - physiopathology ; Cell Movement ; Cell Proliferation ; Cell Size ; Disease Models, Animal ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Mice, Inbred C57BL ; MTOR Inhibitors - pharmacology ; Original ; Oxygen - metabolism ; Phenotype ; Retinal Artery - metabolism ; Retinal Artery - pathology ; Retinal Artery - physiopathology ; Retinal Neovascularization - genetics ; Retinal Neovascularization - metabolism ; Retinal Neovascularization - pathology ; Retinal Neovascularization - physiopathology ; Retinal Neovascularization - prevention & control ; Retinal Vein - pathology ; Retinal Vessels - metabolism ; Retinal Vessels - pathology ; Retinal Vessels - physiopathology ; Signal Transduction ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Cardiovascular research, 2024-12, Vol.120 (15), p.1967-1984</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-eac3c06e8fb047369d217b764a17ab680f97068a0e2d4c25b31fad636b152d293</cites><orcidid>0000-0002-2861-3883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39308243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ouarné, Marie</creatorcontrib><creatorcontrib>Pena, Andreia</creatorcontrib><creatorcontrib>Ramalho, Daniela</creatorcontrib><creatorcontrib>Conchinha, Nadine V</creatorcontrib><creatorcontrib>Costa, Tiago</creatorcontrib><creatorcontrib>Enjalbert, Romain</creatorcontrib><creatorcontrib>Figueiredo, Ana M</creatorcontrib><creatorcontrib>Saraiva, Marta Pimentel</creatorcontrib><creatorcontrib>Carvalho, Yulia</creatorcontrib><creatorcontrib>Bernabeu, Miguel O</creatorcontrib><creatorcontrib>Henao Misikova, Lenka</creatorcontrib><creatorcontrib>Oh, S Paul</creatorcontrib><creatorcontrib>Franco, Cláudio A</creatorcontrib><title>A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood.
Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts.
Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.</description><subject>Activin Receptors, Type I - genetics</subject><subject>Activin Receptors, Type I - metabolism</subject><subject>Activin Receptors, Type II</subject><subject>Animals</subject><subject>Arteriovenous Malformations - genetics</subject><subject>Arteriovenous Malformations - metabolism</subject><subject>Arteriovenous Malformations - pathology</subject><subject>Arteriovenous Malformations - physiopathology</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cell Size</subject><subject>Disease Models, Animal</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Mice, Inbred C57BL</subject><subject>MTOR Inhibitors - pharmacology</subject><subject>Original</subject><subject>Oxygen - metabolism</subject><subject>Phenotype</subject><subject>Retinal Artery - metabolism</subject><subject>Retinal Artery - pathology</subject><subject>Retinal Artery - physiopathology</subject><subject>Retinal Neovascularization - genetics</subject><subject>Retinal Neovascularization - metabolism</subject><subject>Retinal Neovascularization - pathology</subject><subject>Retinal Neovascularization - physiopathology</subject><subject>Retinal Neovascularization - prevention & control</subject><subject>Retinal Vein - pathology</subject><subject>Retinal Vessels - metabolism</subject><subject>Retinal Vessels - pathology</subject><subject>Retinal Vessels - physiopathology</subject><subject>Signal Transduction</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0008-6363</issn><issn>1755-3245</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LJDEQxYO46Ojuae-SoyDtJp3upHMSGfwCYS96DtXpaidLd6JJ94B3__DN6DjooQjF-_GqKo-Q35ydc6bFH7uOuQC5ZHtkwVVdF6Ks6n2yYIw1hRRSHJKjlP7ltq5VdUAOhRasKSuxIG-X1AdfPKHHyVk6hg4HGnq6hmTnASJNq9lPiTrfhzgmGjydVkgtDsO7PKJdgXdpI_V0w8DkMgS-oxFTGOb3NmsQJ4wurNGHOdERhh2cfpIfPQwJf23fY_J4ffWwvC3u_97cLS_vC1tqPRUIVlgmselbVikhdVdy1SpZAVfQyob1WjHZAMOyq2xZt4L30OX7W16XXanFMbn48H2e2xE7i36KMJjn6EaIryaAM98V71bmKawN5zJvoJrscLp1iOFlxjSZ0aXNZ4DHfJYRnDWi0UqrjJ59oDaGlCL2uzmcmU1wJgdntsFl-uTrajv2MynxH-IfmeU</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Ouarné, Marie</creator><creator>Pena, Andreia</creator><creator>Ramalho, Daniela</creator><creator>Conchinha, Nadine V</creator><creator>Costa, Tiago</creator><creator>Enjalbert, Romain</creator><creator>Figueiredo, Ana M</creator><creator>Saraiva, Marta Pimentel</creator><creator>Carvalho, Yulia</creator><creator>Bernabeu, Miguel O</creator><creator>Henao Misikova, Lenka</creator><creator>Oh, S Paul</creator><creator>Franco, Cláudio A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2861-3883</orcidid></search><sort><creationdate>20241204</creationdate><title>A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations</title><author>Ouarné, Marie ; Pena, Andreia ; Ramalho, Daniela ; Conchinha, Nadine V ; Costa, Tiago ; Enjalbert, Romain ; Figueiredo, Ana M ; Saraiva, Marta Pimentel ; Carvalho, Yulia ; Bernabeu, Miguel O ; Henao Misikova, Lenka ; Oh, S Paul ; Franco, Cláudio A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-eac3c06e8fb047369d217b764a17ab680f97068a0e2d4c25b31fad636b152d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activin Receptors, Type I - genetics</topic><topic>Activin Receptors, Type I - metabolism</topic><topic>Activin Receptors, Type II</topic><topic>Animals</topic><topic>Arteriovenous Malformations - genetics</topic><topic>Arteriovenous Malformations - metabolism</topic><topic>Arteriovenous Malformations - pathology</topic><topic>Arteriovenous Malformations - physiopathology</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cell Size</topic><topic>Disease Models, Animal</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Mice, Inbred C57BL</topic><topic>MTOR Inhibitors - pharmacology</topic><topic>Original</topic><topic>Oxygen - metabolism</topic><topic>Phenotype</topic><topic>Retinal Artery - metabolism</topic><topic>Retinal Artery - pathology</topic><topic>Retinal Artery - physiopathology</topic><topic>Retinal Neovascularization - genetics</topic><topic>Retinal Neovascularization - metabolism</topic><topic>Retinal Neovascularization - pathology</topic><topic>Retinal Neovascularization - physiopathology</topic><topic>Retinal Neovascularization - prevention & control</topic><topic>Retinal Vein - pathology</topic><topic>Retinal Vessels - metabolism</topic><topic>Retinal Vessels - pathology</topic><topic>Retinal Vessels - physiopathology</topic><topic>Signal Transduction</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouarné, Marie</creatorcontrib><creatorcontrib>Pena, Andreia</creatorcontrib><creatorcontrib>Ramalho, Daniela</creatorcontrib><creatorcontrib>Conchinha, Nadine V</creatorcontrib><creatorcontrib>Costa, Tiago</creatorcontrib><creatorcontrib>Enjalbert, Romain</creatorcontrib><creatorcontrib>Figueiredo, Ana M</creatorcontrib><creatorcontrib>Saraiva, Marta Pimentel</creatorcontrib><creatorcontrib>Carvalho, Yulia</creatorcontrib><creatorcontrib>Bernabeu, Miguel O</creatorcontrib><creatorcontrib>Henao Misikova, Lenka</creatorcontrib><creatorcontrib>Oh, S Paul</creatorcontrib><creatorcontrib>Franco, Cláudio A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouarné, Marie</au><au>Pena, Andreia</au><au>Ramalho, Daniela</au><au>Conchinha, Nadine V</au><au>Costa, Tiago</au><au>Enjalbert, Romain</au><au>Figueiredo, Ana M</au><au>Saraiva, Marta Pimentel</au><au>Carvalho, Yulia</au><au>Bernabeu, Miguel O</au><au>Henao Misikova, Lenka</au><au>Oh, S Paul</au><au>Franco, Cláudio A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2024-12-04</date><risdate>2024</risdate><volume>120</volume><issue>15</issue><spage>1967</spage><epage>1984</epage><pages>1967-1984</pages><issn>0008-6363</issn><issn>1755-3245</issn><eissn>1755-3245</eissn><abstract>Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood.
Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts.
Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39308243</pmid><doi>10.1093/cvr/cvae160</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2861-3883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6363 |
ispartof | Cardiovascular research, 2024-12, Vol.120 (15), p.1967-1984 |
issn | 0008-6363 1755-3245 1755-3245 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629978 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE |
subjects | Activin Receptors, Type I - genetics Activin Receptors, Type I - metabolism Activin Receptors, Type II Animals Arteriovenous Malformations - genetics Arteriovenous Malformations - metabolism Arteriovenous Malformations - pathology Arteriovenous Malformations - physiopathology Cell Movement Cell Proliferation Cell Size Disease Models, Animal Endothelial Cells - metabolism Endothelial Cells - pathology Mice, Inbred C57BL MTOR Inhibitors - pharmacology Original Oxygen - metabolism Phenotype Retinal Artery - metabolism Retinal Artery - pathology Retinal Artery - physiopathology Retinal Neovascularization - genetics Retinal Neovascularization - metabolism Retinal Neovascularization - pathology Retinal Neovascularization - physiopathology Retinal Neovascularization - prevention & control Retinal Vein - pathology Retinal Vessels - metabolism Retinal Vessels - pathology Retinal Vessels - physiopathology Signal Transduction TOR Serine-Threonine Kinases - metabolism |
title | A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-genetic%20model%20of%20vascular%20shunts%20informs%20on%20the%20cellular%20mechanisms%20of%20formation%20and%20resolution%20of%20arteriovenous%20malformations&rft.jtitle=Cardiovascular%20research&rft.au=Ouarn%C3%A9,%20Marie&rft.date=2024-12-04&rft.volume=120&rft.issue=15&rft.spage=1967&rft.epage=1984&rft.pages=1967-1984&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvae160&rft_dat=%3Cproquest_pubme%3E3108389797%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108389797&rft_id=info:pmid/39308243&rfr_iscdi=true |