Real-time and programmable transcriptome sequencing with PROFIT-seq

The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2024-12, Vol.26 (12), p.2183-2194
Hauptverfasser: Zhang, Jinyang, Hou, Lingling, Ma, Lianjun, Cai, Zhengyi, Ye, Shujun, Liu, Yang, Ji, Peifeng, Zuo, Zhenqiang, Zhao, Fangqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2194
container_issue 12
container_start_page 2183
container_title Nature cell biology
container_volume 26
creator Zhang, Jinyang
Hou, Lingling
Ma, Lianjun
Cai, Zhengyi
Ye, Shujun
Liu, Yang
Ji, Peifeng
Zuo, Zhenqiang
Zhao, Fangqing
description The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios. Zhang, Hou, Ma et al. present PROFIT-seq, a sequencing strategy that involves adaptive sampling of transcriptome libraries to enrich genes of interest and allows unbiased quantification of the whole transcriptome.
doi_str_mv 10.1038/s41556-024-01537-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11628399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142381863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4558ba92aec0c561cc2d26f036773ebc911b4f97dd1aa3df76662ea67f4eef613</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVoyKv9A1kUQzfZqNXV01qVMjQPCCSEZC1k-XriYMtTydPSfx9NJk3aLrKS0Pl07j0cQo6BfQYm6i9ZglKaMi4pAyUMhR1yANJoKrWx7zZ3ragRlu-Tw5wfGAMpmdkj-8JKKbSVB2Rxg36gcz9i5WNbrdK0TH4cfTNgNScfc0j9ap6KnPHHGmPo47L61c_31fXN1enFLS3P78lu54eMH57PI3J3-v12cU4vr84uFt8uaRBKz1QqVTfeco-BBaUhBN5y3TGhjRHYBAvQyM6atgXvRdsZrTVHr00nETsN4oh83fqu1s2IbcBYNhzcKvWjT7_d5Hv3rxL7e7ecfjoAzWthbXE4eXZIU0mTZzf2OeAw-IjTOjsBnDFVW84L-uk_9GFap1jyFUpyUUOtRaH4lgppyjlh97INMLcpyW1LcqUk91SS2-T4-HeOly9_WimA2AK5SHGJ6XX2G7aPDPWdag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142381863</pqid></control><display><type>article</type><title>Real-time and programmable transcriptome sequencing with PROFIT-seq</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Zhang, Jinyang ; Hou, Lingling ; Ma, Lianjun ; Cai, Zhengyi ; Ye, Shujun ; Liu, Yang ; Ji, Peifeng ; Zuo, Zhenqiang ; Zhao, Fangqing</creator><creatorcontrib>Zhang, Jinyang ; Hou, Lingling ; Ma, Lianjun ; Cai, Zhengyi ; Ye, Shujun ; Liu, Yang ; Ji, Peifeng ; Zuo, Zhenqiang ; Zhao, Fangqing</creatorcontrib><description>The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios. Zhang, Hou, Ma et al. present PROFIT-seq, a sequencing strategy that involves adaptive sampling of transcriptome libraries to enrich genes of interest and allows unbiased quantification of the whole transcriptome.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-024-01537-1</identifier><identifier>PMID: 39443694</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/114 ; 631/1647/2017 ; Adaptive sampling ; Animals ; Bacterial diseases ; Bar codes ; Biology ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Chromosomes ; Circular RNA ; Combinatorial analysis ; Complexity ; Control systems ; Coronaviruses ; COVID-19 ; Data processing ; Developmental Biology ; Enrichment ; Gene Expression Profiling - methods ; Gene sequencing ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Immune response ; Infections ; Life Sciences ; Mice ; Polyadenylation ; Polyps ; Reverse transcription ; Sequence Analysis, RNA - methods ; Stem Cells ; Target detection ; technical-report ; Transcriptome ; Transcriptomes</subject><ispartof>Nature cell biology, 2024-12, Vol.26 (12), p.2183-2194</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-4558ba92aec0c561cc2d26f036773ebc911b4f97dd1aa3df76662ea67f4eef613</cites><orcidid>0000-0002-5163-894X ; 0000-0002-6216-1235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-024-01537-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-024-01537-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39443694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jinyang</creatorcontrib><creatorcontrib>Hou, Lingling</creatorcontrib><creatorcontrib>Ma, Lianjun</creatorcontrib><creatorcontrib>Cai, Zhengyi</creatorcontrib><creatorcontrib>Ye, Shujun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ji, Peifeng</creatorcontrib><creatorcontrib>Zuo, Zhenqiang</creatorcontrib><creatorcontrib>Zhao, Fangqing</creatorcontrib><title>Real-time and programmable transcriptome sequencing with PROFIT-seq</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios. Zhang, Hou, Ma et al. present PROFIT-seq, a sequencing strategy that involves adaptive sampling of transcriptome libraries to enrich genes of interest and allows unbiased quantification of the whole transcriptome.</description><subject>38/39</subject><subject>631/114</subject><subject>631/1647/2017</subject><subject>Adaptive sampling</subject><subject>Animals</subject><subject>Bacterial diseases</subject><subject>Bar codes</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Chromosomes</subject><subject>Circular RNA</subject><subject>Combinatorial analysis</subject><subject>Complexity</subject><subject>Control systems</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data processing</subject><subject>Developmental Biology</subject><subject>Enrichment</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene sequencing</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Immune response</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Polyadenylation</subject><subject>Polyps</subject><subject>Reverse transcription</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Stem Cells</subject><subject>Target detection</subject><subject>technical-report</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtr3DAUhUVoyKv9A1kUQzfZqNXV01qVMjQPCCSEZC1k-XriYMtTydPSfx9NJk3aLrKS0Pl07j0cQo6BfQYm6i9ZglKaMi4pAyUMhR1yANJoKrWx7zZ3ragRlu-Tw5wfGAMpmdkj-8JKKbSVB2Rxg36gcz9i5WNbrdK0TH4cfTNgNScfc0j9ap6KnPHHGmPo47L61c_31fXN1enFLS3P78lu54eMH57PI3J3-v12cU4vr84uFt8uaRBKz1QqVTfeco-BBaUhBN5y3TGhjRHYBAvQyM6atgXvRdsZrTVHr00nETsN4oh83fqu1s2IbcBYNhzcKvWjT7_d5Hv3rxL7e7ecfjoAzWthbXE4eXZIU0mTZzf2OeAw-IjTOjsBnDFVW84L-uk_9GFap1jyFUpyUUOtRaH4lgppyjlh97INMLcpyW1LcqUk91SS2-T4-HeOly9_WimA2AK5SHGJ6XX2G7aPDPWdag</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhang, Jinyang</creator><creator>Hou, Lingling</creator><creator>Ma, Lianjun</creator><creator>Cai, Zhengyi</creator><creator>Ye, Shujun</creator><creator>Liu, Yang</creator><creator>Ji, Peifeng</creator><creator>Zuo, Zhenqiang</creator><creator>Zhao, Fangqing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5163-894X</orcidid><orcidid>https://orcid.org/0000-0002-6216-1235</orcidid></search><sort><creationdate>20241201</creationdate><title>Real-time and programmable transcriptome sequencing with PROFIT-seq</title><author>Zhang, Jinyang ; Hou, Lingling ; Ma, Lianjun ; Cai, Zhengyi ; Ye, Shujun ; Liu, Yang ; Ji, Peifeng ; Zuo, Zhenqiang ; Zhao, Fangqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4558ba92aec0c561cc2d26f036773ebc911b4f97dd1aa3df76662ea67f4eef613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>631/114</topic><topic>631/1647/2017</topic><topic>Adaptive sampling</topic><topic>Animals</topic><topic>Bacterial diseases</topic><topic>Bar codes</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Chromosomes</topic><topic>Circular RNA</topic><topic>Combinatorial analysis</topic><topic>Complexity</topic><topic>Control systems</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data processing</topic><topic>Developmental Biology</topic><topic>Enrichment</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene sequencing</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Immune response</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Polyadenylation</topic><topic>Polyps</topic><topic>Reverse transcription</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Stem Cells</topic><topic>Target detection</topic><topic>technical-report</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinyang</creatorcontrib><creatorcontrib>Hou, Lingling</creatorcontrib><creatorcontrib>Ma, Lianjun</creatorcontrib><creatorcontrib>Cai, Zhengyi</creatorcontrib><creatorcontrib>Ye, Shujun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ji, Peifeng</creatorcontrib><creatorcontrib>Zuo, Zhenqiang</creatorcontrib><creatorcontrib>Zhao, Fangqing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinyang</au><au>Hou, Lingling</au><au>Ma, Lianjun</au><au>Cai, Zhengyi</au><au>Ye, Shujun</au><au>Liu, Yang</au><au>Ji, Peifeng</au><au>Zuo, Zhenqiang</au><au>Zhao, Fangqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time and programmable transcriptome sequencing with PROFIT-seq</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>26</volume><issue>12</issue><spage>2183</spage><epage>2194</epage><pages>2183-2194</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios. Zhang, Hou, Ma et al. present PROFIT-seq, a sequencing strategy that involves adaptive sampling of transcriptome libraries to enrich genes of interest and allows unbiased quantification of the whole transcriptome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39443694</pmid><doi>10.1038/s41556-024-01537-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5163-894X</orcidid><orcidid>https://orcid.org/0000-0002-6216-1235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2024-12, Vol.26 (12), p.2183-2194
issn 1465-7392
1476-4679
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11628399
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 38/39
631/114
631/1647/2017
Adaptive sampling
Animals
Bacterial diseases
Bar codes
Biology
Biomedical and Life Sciences
Cancer Research
Cell Biology
Chromosomes
Circular RNA
Combinatorial analysis
Complexity
Control systems
Coronaviruses
COVID-19
Data processing
Developmental Biology
Enrichment
Gene Expression Profiling - methods
Gene sequencing
High-Throughput Nucleotide Sequencing - methods
Humans
Immune response
Infections
Life Sciences
Mice
Polyadenylation
Polyps
Reverse transcription
Sequence Analysis, RNA - methods
Stem Cells
Target detection
technical-report
Transcriptome
Transcriptomes
title Real-time and programmable transcriptome sequencing with PROFIT-seq
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20and%20programmable%20transcriptome%20sequencing%20with%20PROFIT-seq&rft.jtitle=Nature%20cell%20biology&rft.au=Zhang,%20Jinyang&rft.date=2024-12-01&rft.volume=26&rft.issue=12&rft.spage=2183&rft.epage=2194&rft.pages=2183-2194&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-024-01537-1&rft_dat=%3Cproquest_pubme%3E3142381863%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142381863&rft_id=info:pmid/39443694&rfr_iscdi=true