Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression

Type 2 diabetes (T2D) arises when pancreatic β cells fail to produce sufficient insulin to control blood glucose appropriately. Aberrant nutrient sensing by O-GlcNAcylation and mTORC1 is linked to T2D and the failure of insulin-producing β cells. However, the nature of their crosstalk in β cells rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JCI insight 2024-12, Vol.9 (23)
Hauptverfasser: Jo, Seokwon, Esch, Nicholas, Nguyen, Anh, Wong, Alicia, Mohan, Ramkumar, Kim, Clara, Blandino-Rosano, Manuel, Bernal-Mizrachi, Ernesto, Alejandro, Emilyn U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title JCI insight
container_volume 9
creator Jo, Seokwon
Esch, Nicholas
Nguyen, Anh
Wong, Alicia
Mohan, Ramkumar
Kim, Clara
Blandino-Rosano, Manuel
Bernal-Mizrachi, Ernesto
Alejandro, Emilyn U
description Type 2 diabetes (T2D) arises when pancreatic β cells fail to produce sufficient insulin to control blood glucose appropriately. Aberrant nutrient sensing by O-GlcNAcylation and mTORC1 is linked to T2D and the failure of insulin-producing β cells. However, the nature of their crosstalk in β cells remains unexplored. Recently, O-GlcNAcylation, a posttranslation modification controlled by enzymes O-GlcNAc transferase/O-GlcNAcase (OGT/OGA), emerged as a pivotal regulator for β cell health; deficiency in either enzyme causes β cell failure. The present study investigates the previously unidentified connection between nutrient sensor OGT and mTORC1 crosstalk to regulate β cell mass and function in vivo. We show reduced OGT and mTORC1 activity in islets of a preclinical β cell dysfunction model and islets from humans with obesity. Using loss or gain of function of OGT, we identified that O-GlcNAcylation positively regulated mTORC1 signaling in β cells. O-GlcNAcylation negatively modulated autophagy, as the removal of OGT increased autophagy, while the deletion of OGA decreased it. Increasing mTORC1 signaling, via deletion of TSC2, alleviated the diabetic phenotypes by increasing β cell mass but not β cell function in OGT-deficient mice. Downstream phospho-protein signaling analyses revealed diverging effects on MKK4 and calmodulin signaling between islets with OGT, TSC2, or combined deletion. These data provide evidence of OGT's significance as an upstream regulator of mTORC1 and autophagy, crucial for the regulation of β cell function and glucose homeostasis.
doi_str_mv 10.1172/jci.insight.183033
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11623944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115499744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-6d7773de565b7a09cc9707ad90c3499b4d49db8d16ede549d928ea7bb583aee33</originalsourceid><addsrcrecordid>eNpVkc1KAzEUhYMoVmpfwIVk6cKp-Zk2yUqkaBWKBanrkEnSaWRmUpOZQl_LB_GZTG0VXeVAzjn3Jh8AFxgNMWbk5k27oWuiK1ftEHOKKD0CZ4QykVGG-PEf3QODGN8QQpjlBI34KehRQTknPD8DxczHCP0SzrNppZ_v9LZSrfMNrL3pkrQR1ov5ywRD1RioutavV6rcQtfAzw-obVXFa2iC27imhMapwu4iBK6DL4ONMVWdg5OlqqIdHM4-eH24X0wes9l8-jS5m2Wa5KjNxoYxRo0djUcFU0hoLRhiygikaS5EkZtcmIIbPLbJlLQg3CpWFCNOlbWU9sHtvnfdFbU12jZtUJVcB1ersJVeOfn_pnErWfqNxHhMqMjz1HB1aAj-vbOxlbWLuzeqxvouSopxGizYt5XsrTqkDwx2-TsHI7kDJBMgeQAk94BS6PLvhr-RHxz0CwilkSU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115499744</pqid></control><display><type>article</type><title>Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jo, Seokwon ; Esch, Nicholas ; Nguyen, Anh ; Wong, Alicia ; Mohan, Ramkumar ; Kim, Clara ; Blandino-Rosano, Manuel ; Bernal-Mizrachi, Ernesto ; Alejandro, Emilyn U</creator><creatorcontrib>Jo, Seokwon ; Esch, Nicholas ; Nguyen, Anh ; Wong, Alicia ; Mohan, Ramkumar ; Kim, Clara ; Blandino-Rosano, Manuel ; Bernal-Mizrachi, Ernesto ; Alejandro, Emilyn U</creatorcontrib><description>Type 2 diabetes (T2D) arises when pancreatic β cells fail to produce sufficient insulin to control blood glucose appropriately. Aberrant nutrient sensing by O-GlcNAcylation and mTORC1 is linked to T2D and the failure of insulin-producing β cells. However, the nature of their crosstalk in β cells remains unexplored. Recently, O-GlcNAcylation, a posttranslation modification controlled by enzymes O-GlcNAc transferase/O-GlcNAcase (OGT/OGA), emerged as a pivotal regulator for β cell health; deficiency in either enzyme causes β cell failure. The present study investigates the previously unidentified connection between nutrient sensor OGT and mTORC1 crosstalk to regulate β cell mass and function in vivo. We show reduced OGT and mTORC1 activity in islets of a preclinical β cell dysfunction model and islets from humans with obesity. Using loss or gain of function of OGT, we identified that O-GlcNAcylation positively regulated mTORC1 signaling in β cells. O-GlcNAcylation negatively modulated autophagy, as the removal of OGT increased autophagy, while the deletion of OGA decreased it. Increasing mTORC1 signaling, via deletion of TSC2, alleviated the diabetic phenotypes by increasing β cell mass but not β cell function in OGT-deficient mice. Downstream phospho-protein signaling analyses revealed diverging effects on MKK4 and calmodulin signaling between islets with OGT, TSC2, or combined deletion. These data provide evidence of OGT's significance as an upstream regulator of mTORC1 and autophagy, crucial for the regulation of β cell function and glucose homeostasis.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.183033</identifier><identifier>PMID: 39388284</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Autophagy - physiology ; Diabetes Mellitus, Type 2 - metabolism ; Disease Progression ; Humans ; Insulin - metabolism ; Insulin-Secreting Cells - metabolism ; Male ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Knockout ; N-Acetylglucosaminyltransferases - genetics ; N-Acetylglucosaminyltransferases - metabolism ; Obesity - metabolism ; Signal Transduction</subject><ispartof>JCI insight, 2024-12, Vol.9 (23)</ispartof><rights>2024 Jo et al. 2024 Jo et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-6d7773de565b7a09cc9707ad90c3499b4d49db8d16ede549d928ea7bb583aee33</cites><orcidid>0000-0002-1712-8233 ; 0000-0002-1018-3539 ; 0000-0001-9997-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623944/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623944/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39388284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Seokwon</creatorcontrib><creatorcontrib>Esch, Nicholas</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Wong, Alicia</creatorcontrib><creatorcontrib>Mohan, Ramkumar</creatorcontrib><creatorcontrib>Kim, Clara</creatorcontrib><creatorcontrib>Blandino-Rosano, Manuel</creatorcontrib><creatorcontrib>Bernal-Mizrachi, Ernesto</creatorcontrib><creatorcontrib>Alejandro, Emilyn U</creatorcontrib><title>Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>Type 2 diabetes (T2D) arises when pancreatic β cells fail to produce sufficient insulin to control blood glucose appropriately. Aberrant nutrient sensing by O-GlcNAcylation and mTORC1 is linked to T2D and the failure of insulin-producing β cells. However, the nature of their crosstalk in β cells remains unexplored. Recently, O-GlcNAcylation, a posttranslation modification controlled by enzymes O-GlcNAc transferase/O-GlcNAcase (OGT/OGA), emerged as a pivotal regulator for β cell health; deficiency in either enzyme causes β cell failure. The present study investigates the previously unidentified connection between nutrient sensor OGT and mTORC1 crosstalk to regulate β cell mass and function in vivo. We show reduced OGT and mTORC1 activity in islets of a preclinical β cell dysfunction model and islets from humans with obesity. Using loss or gain of function of OGT, we identified that O-GlcNAcylation positively regulated mTORC1 signaling in β cells. O-GlcNAcylation negatively modulated autophagy, as the removal of OGT increased autophagy, while the deletion of OGA decreased it. Increasing mTORC1 signaling, via deletion of TSC2, alleviated the diabetic phenotypes by increasing β cell mass but not β cell function in OGT-deficient mice. Downstream phospho-protein signaling analyses revealed diverging effects on MKK4 and calmodulin signaling between islets with OGT, TSC2, or combined deletion. These data provide evidence of OGT's significance as an upstream regulator of mTORC1 and autophagy, crucial for the regulation of β cell function and glucose homeostasis.</description><subject>Animals</subject><subject>Autophagy - physiology</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Insulin - metabolism</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>N-Acetylglucosaminyltransferases - genetics</subject><subject>N-Acetylglucosaminyltransferases - metabolism</subject><subject>Obesity - metabolism</subject><subject>Signal Transduction</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1KAzEUhYMoVmpfwIVk6cKp-Zk2yUqkaBWKBanrkEnSaWRmUpOZQl_LB_GZTG0VXeVAzjn3Jh8AFxgNMWbk5k27oWuiK1ftEHOKKD0CZ4QykVGG-PEf3QODGN8QQpjlBI34KehRQTknPD8DxczHCP0SzrNppZ_v9LZSrfMNrL3pkrQR1ov5ywRD1RioutavV6rcQtfAzw-obVXFa2iC27imhMapwu4iBK6DL4ONMVWdg5OlqqIdHM4-eH24X0wes9l8-jS5m2Wa5KjNxoYxRo0djUcFU0hoLRhiygikaS5EkZtcmIIbPLbJlLQg3CpWFCNOlbWU9sHtvnfdFbU12jZtUJVcB1ersJVeOfn_pnErWfqNxHhMqMjz1HB1aAj-vbOxlbWLuzeqxvouSopxGizYt5XsrTqkDwx2-TsHI7kDJBMgeQAk94BS6PLvhr-RHxz0CwilkSU</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Jo, Seokwon</creator><creator>Esch, Nicholas</creator><creator>Nguyen, Anh</creator><creator>Wong, Alicia</creator><creator>Mohan, Ramkumar</creator><creator>Kim, Clara</creator><creator>Blandino-Rosano, Manuel</creator><creator>Bernal-Mizrachi, Ernesto</creator><creator>Alejandro, Emilyn U</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1712-8233</orcidid><orcidid>https://orcid.org/0000-0002-1018-3539</orcidid><orcidid>https://orcid.org/0000-0001-9997-3301</orcidid></search><sort><creationdate>20241206</creationdate><title>Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression</title><author>Jo, Seokwon ; Esch, Nicholas ; Nguyen, Anh ; Wong, Alicia ; Mohan, Ramkumar ; Kim, Clara ; Blandino-Rosano, Manuel ; Bernal-Mizrachi, Ernesto ; Alejandro, Emilyn U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-6d7773de565b7a09cc9707ad90c3499b4d49db8d16ede549d928ea7bb583aee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Autophagy - physiology</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Insulin - metabolism</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>N-Acetylglucosaminyltransferases - genetics</topic><topic>N-Acetylglucosaminyltransferases - metabolism</topic><topic>Obesity - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seokwon</creatorcontrib><creatorcontrib>Esch, Nicholas</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Wong, Alicia</creatorcontrib><creatorcontrib>Mohan, Ramkumar</creatorcontrib><creatorcontrib>Kim, Clara</creatorcontrib><creatorcontrib>Blandino-Rosano, Manuel</creatorcontrib><creatorcontrib>Bernal-Mizrachi, Ernesto</creatorcontrib><creatorcontrib>Alejandro, Emilyn U</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seokwon</au><au>Esch, Nicholas</au><au>Nguyen, Anh</au><au>Wong, Alicia</au><au>Mohan, Ramkumar</au><au>Kim, Clara</au><au>Blandino-Rosano, Manuel</au><au>Bernal-Mizrachi, Ernesto</au><au>Alejandro, Emilyn U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>9</volume><issue>23</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>Type 2 diabetes (T2D) arises when pancreatic β cells fail to produce sufficient insulin to control blood glucose appropriately. Aberrant nutrient sensing by O-GlcNAcylation and mTORC1 is linked to T2D and the failure of insulin-producing β cells. However, the nature of their crosstalk in β cells remains unexplored. Recently, O-GlcNAcylation, a posttranslation modification controlled by enzymes O-GlcNAc transferase/O-GlcNAcase (OGT/OGA), emerged as a pivotal regulator for β cell health; deficiency in either enzyme causes β cell failure. The present study investigates the previously unidentified connection between nutrient sensor OGT and mTORC1 crosstalk to regulate β cell mass and function in vivo. We show reduced OGT and mTORC1 activity in islets of a preclinical β cell dysfunction model and islets from humans with obesity. Using loss or gain of function of OGT, we identified that O-GlcNAcylation positively regulated mTORC1 signaling in β cells. O-GlcNAcylation negatively modulated autophagy, as the removal of OGT increased autophagy, while the deletion of OGA decreased it. Increasing mTORC1 signaling, via deletion of TSC2, alleviated the diabetic phenotypes by increasing β cell mass but not β cell function in OGT-deficient mice. Downstream phospho-protein signaling analyses revealed diverging effects on MKK4 and calmodulin signaling between islets with OGT, TSC2, or combined deletion. These data provide evidence of OGT's significance as an upstream regulator of mTORC1 and autophagy, crucial for the regulation of β cell function and glucose homeostasis.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>39388284</pmid><doi>10.1172/jci.insight.183033</doi><orcidid>https://orcid.org/0000-0002-1712-8233</orcidid><orcidid>https://orcid.org/0000-0002-1018-3539</orcidid><orcidid>https://orcid.org/0000-0001-9997-3301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2024-12, Vol.9 (23)
issn 2379-3708
2379-3708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11623944
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Autophagy - physiology
Diabetes Mellitus, Type 2 - metabolism
Disease Progression
Humans
Insulin - metabolism
Insulin-Secreting Cells - metabolism
Male
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Mice, Knockout
N-Acetylglucosaminyltransferases - genetics
N-Acetylglucosaminyltransferases - metabolism
Obesity - metabolism
Signal Transduction
title Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20O-GlcNAcylation%20modulates%20mTORC1%20and%20autophagy%20in%20%CE%B2%20cells,%20driving%20diabetes%202%20progression&rft.jtitle=JCI%20insight&rft.au=Jo,%20Seokwon&rft.date=2024-12-06&rft.volume=9&rft.issue=23&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.183033&rft_dat=%3Cproquest_pubme%3E3115499744%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115499744&rft_id=info:pmid/39388284&rfr_iscdi=true