Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge
Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-d...
Gespeichert in:
Veröffentlicht in: | ArXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | ArXiv.org |
container_volume | |
creator | Wahid, Kareem A Dede, Cem El-Habashy, Dina M Kamel, Serageldin Rooney, Michael K Khamis, Yomna Abdelaal, Moamen R A Ahmed, Sara Corrigan, Kelsey L Chang, Enoch Dudzinski, Stephanie O Salzillo, Travis C McDonald, Brigid A Mulder, Samuel L McCullum, Lucas Alakayleh, Qusai Sjogreen, Carlos He, Renjie Mohamed, Abdallah S R Lai, Stephen Y Christodouleas, John P Schaefer, Andrew J Naser, Mohamed A Fuller, Clifton D |
description | Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for testing, hosted on grand-challenge.org using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11623708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146605327</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1128-571a6154ee8e20553336c8d92a61f197cbc15275445bc29f99751c903aedf7483</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRSMEolXpLyAvyyKSH3Ecr1BVQYvUh9SWdeQ6k9aQ2CFOivh7AhRUVjO6c3XuzFwEfcoYCZOI0suzvhcMvX_BGNNYUM7ZddBjMuaYy6QftKsj1EcD78jlqDkAmoHKkLIZWoJ-Rdu2dDXawL4E26jGOIvyTliovYXGaLQG76yyGtC0NRlkaFxVhdHfTo9Gs-V2Ey7W0ztEMY3Q5KCKAuweboKrXBUehqc6CJ4fH7aTWThfTZ8m43lYEUKTkAuiYsIjgAQo7lZnLNZJJmmn5kQKvdOEU8GjiO80lbmUghMtMVOQ5SJK2CC4_-FW7a6ETHdH1KpIq9qUqv5InTLp_4k1h3TvjikhMWUCfxFGJ0Lt3lrwTVoar6EolAXX-pSRKI4xZ1R01tvzsL-U32ezT5L9e50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146605327</pqid></control><display><type>article</type><title>Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge</title><source>Free E- Journals</source><creator>Wahid, Kareem A ; Dede, Cem ; El-Habashy, Dina M ; Kamel, Serageldin ; Rooney, Michael K ; Khamis, Yomna ; Abdelaal, Moamen R A ; Ahmed, Sara ; Corrigan, Kelsey L ; Chang, Enoch ; Dudzinski, Stephanie O ; Salzillo, Travis C ; McDonald, Brigid A ; Mulder, Samuel L ; McCullum, Lucas ; Alakayleh, Qusai ; Sjogreen, Carlos ; He, Renjie ; Mohamed, Abdallah S R ; Lai, Stephen Y ; Christodouleas, John P ; Schaefer, Andrew J ; Naser, Mohamed A ; Fuller, Clifton D</creator><creatorcontrib>Wahid, Kareem A ; Dede, Cem ; El-Habashy, Dina M ; Kamel, Serageldin ; Rooney, Michael K ; Khamis, Yomna ; Abdelaal, Moamen R A ; Ahmed, Sara ; Corrigan, Kelsey L ; Chang, Enoch ; Dudzinski, Stephanie O ; Salzillo, Travis C ; McDonald, Brigid A ; Mulder, Samuel L ; McCullum, Lucas ; Alakayleh, Qusai ; Sjogreen, Carlos ; He, Renjie ; Mohamed, Abdallah S R ; Lai, Stephen Y ; Christodouleas, John P ; Schaefer, Andrew J ; Naser, Mohamed A ; Fuller, Clifton D</creatorcontrib><description>Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for testing, hosted on grand-challenge.org using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 39650598</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2024-11</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1020-4966 ; 0000-0002-1791-8366 ; 0000-0003-2064-7613 ; 0000-0002-0379-741X ; 0000-1111-2222-3333 ; 0000-0002-2879-5445 ; 0000-0002-6584-7670 ; 0000-0001-6271-9879 ; 0000-0002-5264-3994 ; 0000-0002-0543-9325 ; 0000-0002-0046-4337 ; 0000-0001-5185-4805 ; 0000-0001-9788-7987 ; 0000-0001-9222-472X ; 0000-0001-9166-6286 ; 0000-0003-4476-2122 ; 0000-0003-4230-1330 ; 0009-0005-0050-6567 ; 0000-0002-0503-0175 ; 0000-0002-2860-4653 ; 0000-0001-5182-9976 ; 0000-0001-5061-2038 ; 0000-0001-8531-0849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39650598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahid, Kareem A</creatorcontrib><creatorcontrib>Dede, Cem</creatorcontrib><creatorcontrib>El-Habashy, Dina M</creatorcontrib><creatorcontrib>Kamel, Serageldin</creatorcontrib><creatorcontrib>Rooney, Michael K</creatorcontrib><creatorcontrib>Khamis, Yomna</creatorcontrib><creatorcontrib>Abdelaal, Moamen R A</creatorcontrib><creatorcontrib>Ahmed, Sara</creatorcontrib><creatorcontrib>Corrigan, Kelsey L</creatorcontrib><creatorcontrib>Chang, Enoch</creatorcontrib><creatorcontrib>Dudzinski, Stephanie O</creatorcontrib><creatorcontrib>Salzillo, Travis C</creatorcontrib><creatorcontrib>McDonald, Brigid A</creatorcontrib><creatorcontrib>Mulder, Samuel L</creatorcontrib><creatorcontrib>McCullum, Lucas</creatorcontrib><creatorcontrib>Alakayleh, Qusai</creatorcontrib><creatorcontrib>Sjogreen, Carlos</creatorcontrib><creatorcontrib>He, Renjie</creatorcontrib><creatorcontrib>Mohamed, Abdallah S R</creatorcontrib><creatorcontrib>Lai, Stephen Y</creatorcontrib><creatorcontrib>Christodouleas, John P</creatorcontrib><creatorcontrib>Schaefer, Andrew J</creatorcontrib><creatorcontrib>Naser, Mohamed A</creatorcontrib><creatorcontrib>Fuller, Clifton D</creatorcontrib><title>Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for testing, hosted on grand-challenge.org using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRSMEolXpLyAvyyKSH3Ecr1BVQYvUh9SWdeQ6k9aQ2CFOivh7AhRUVjO6c3XuzFwEfcoYCZOI0suzvhcMvX_BGNNYUM7ZddBjMuaYy6QftKsj1EcD78jlqDkAmoHKkLIZWoJ-Rdu2dDXawL4E26jGOIvyTliovYXGaLQG76yyGtC0NRlkaFxVhdHfTo9Gs-V2Ey7W0ztEMY3Q5KCKAuweboKrXBUehqc6CJ4fH7aTWThfTZ8m43lYEUKTkAuiYsIjgAQo7lZnLNZJJmmn5kQKvdOEU8GjiO80lbmUghMtMVOQ5SJK2CC4_-FW7a6ETHdH1KpIq9qUqv5InTLp_4k1h3TvjikhMWUCfxFGJ0Lt3lrwTVoar6EolAXX-pSRKI4xZ1R01tvzsL-U32ezT5L9e50</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Wahid, Kareem A</creator><creator>Dede, Cem</creator><creator>El-Habashy, Dina M</creator><creator>Kamel, Serageldin</creator><creator>Rooney, Michael K</creator><creator>Khamis, Yomna</creator><creator>Abdelaal, Moamen R A</creator><creator>Ahmed, Sara</creator><creator>Corrigan, Kelsey L</creator><creator>Chang, Enoch</creator><creator>Dudzinski, Stephanie O</creator><creator>Salzillo, Travis C</creator><creator>McDonald, Brigid A</creator><creator>Mulder, Samuel L</creator><creator>McCullum, Lucas</creator><creator>Alakayleh, Qusai</creator><creator>Sjogreen, Carlos</creator><creator>He, Renjie</creator><creator>Mohamed, Abdallah S R</creator><creator>Lai, Stephen Y</creator><creator>Christodouleas, John P</creator><creator>Schaefer, Andrew J</creator><creator>Naser, Mohamed A</creator><creator>Fuller, Clifton D</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1020-4966</orcidid><orcidid>https://orcid.org/0000-0002-1791-8366</orcidid><orcidid>https://orcid.org/0000-0003-2064-7613</orcidid><orcidid>https://orcid.org/0000-0002-0379-741X</orcidid><orcidid>https://orcid.org/0000-1111-2222-3333</orcidid><orcidid>https://orcid.org/0000-0002-2879-5445</orcidid><orcidid>https://orcid.org/0000-0002-6584-7670</orcidid><orcidid>https://orcid.org/0000-0001-6271-9879</orcidid><orcidid>https://orcid.org/0000-0002-5264-3994</orcidid><orcidid>https://orcid.org/0000-0002-0543-9325</orcidid><orcidid>https://orcid.org/0000-0002-0046-4337</orcidid><orcidid>https://orcid.org/0000-0001-5185-4805</orcidid><orcidid>https://orcid.org/0000-0001-9788-7987</orcidid><orcidid>https://orcid.org/0000-0001-9222-472X</orcidid><orcidid>https://orcid.org/0000-0001-9166-6286</orcidid><orcidid>https://orcid.org/0000-0003-4476-2122</orcidid><orcidid>https://orcid.org/0000-0003-4230-1330</orcidid><orcidid>https://orcid.org/0009-0005-0050-6567</orcidid><orcidid>https://orcid.org/0000-0002-0503-0175</orcidid><orcidid>https://orcid.org/0000-0002-2860-4653</orcidid><orcidid>https://orcid.org/0000-0001-5182-9976</orcidid><orcidid>https://orcid.org/0000-0001-5061-2038</orcidid><orcidid>https://orcid.org/0000-0001-8531-0849</orcidid></search><sort><creationdate>20241128</creationdate><title>Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge</title><author>Wahid, Kareem A ; Dede, Cem ; El-Habashy, Dina M ; Kamel, Serageldin ; Rooney, Michael K ; Khamis, Yomna ; Abdelaal, Moamen R A ; Ahmed, Sara ; Corrigan, Kelsey L ; Chang, Enoch ; Dudzinski, Stephanie O ; Salzillo, Travis C ; McDonald, Brigid A ; Mulder, Samuel L ; McCullum, Lucas ; Alakayleh, Qusai ; Sjogreen, Carlos ; He, Renjie ; Mohamed, Abdallah S R ; Lai, Stephen Y ; Christodouleas, John P ; Schaefer, Andrew J ; Naser, Mohamed A ; Fuller, Clifton D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1128-571a6154ee8e20553336c8d92a61f197cbc15275445bc29f99751c903aedf7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wahid, Kareem A</creatorcontrib><creatorcontrib>Dede, Cem</creatorcontrib><creatorcontrib>El-Habashy, Dina M</creatorcontrib><creatorcontrib>Kamel, Serageldin</creatorcontrib><creatorcontrib>Rooney, Michael K</creatorcontrib><creatorcontrib>Khamis, Yomna</creatorcontrib><creatorcontrib>Abdelaal, Moamen R A</creatorcontrib><creatorcontrib>Ahmed, Sara</creatorcontrib><creatorcontrib>Corrigan, Kelsey L</creatorcontrib><creatorcontrib>Chang, Enoch</creatorcontrib><creatorcontrib>Dudzinski, Stephanie O</creatorcontrib><creatorcontrib>Salzillo, Travis C</creatorcontrib><creatorcontrib>McDonald, Brigid A</creatorcontrib><creatorcontrib>Mulder, Samuel L</creatorcontrib><creatorcontrib>McCullum, Lucas</creatorcontrib><creatorcontrib>Alakayleh, Qusai</creatorcontrib><creatorcontrib>Sjogreen, Carlos</creatorcontrib><creatorcontrib>He, Renjie</creatorcontrib><creatorcontrib>Mohamed, Abdallah S R</creatorcontrib><creatorcontrib>Lai, Stephen Y</creatorcontrib><creatorcontrib>Christodouleas, John P</creatorcontrib><creatorcontrib>Schaefer, Andrew J</creatorcontrib><creatorcontrib>Naser, Mohamed A</creatorcontrib><creatorcontrib>Fuller, Clifton D</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahid, Kareem A</au><au>Dede, Cem</au><au>El-Habashy, Dina M</au><au>Kamel, Serageldin</au><au>Rooney, Michael K</au><au>Khamis, Yomna</au><au>Abdelaal, Moamen R A</au><au>Ahmed, Sara</au><au>Corrigan, Kelsey L</au><au>Chang, Enoch</au><au>Dudzinski, Stephanie O</au><au>Salzillo, Travis C</au><au>McDonald, Brigid A</au><au>Mulder, Samuel L</au><au>McCullum, Lucas</au><au>Alakayleh, Qusai</au><au>Sjogreen, Carlos</au><au>He, Renjie</au><au>Mohamed, Abdallah S R</au><au>Lai, Stephen Y</au><au>Christodouleas, John P</au><au>Schaefer, Andrew J</au><au>Naser, Mohamed A</au><au>Fuller, Clifton D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-11-28</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for testing, hosted on grand-challenge.org using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>39650598</pmid><orcidid>https://orcid.org/0000-0003-1020-4966</orcidid><orcidid>https://orcid.org/0000-0002-1791-8366</orcidid><orcidid>https://orcid.org/0000-0003-2064-7613</orcidid><orcidid>https://orcid.org/0000-0002-0379-741X</orcidid><orcidid>https://orcid.org/0000-1111-2222-3333</orcidid><orcidid>https://orcid.org/0000-0002-2879-5445</orcidid><orcidid>https://orcid.org/0000-0002-6584-7670</orcidid><orcidid>https://orcid.org/0000-0001-6271-9879</orcidid><orcidid>https://orcid.org/0000-0002-5264-3994</orcidid><orcidid>https://orcid.org/0000-0002-0543-9325</orcidid><orcidid>https://orcid.org/0000-0002-0046-4337</orcidid><orcidid>https://orcid.org/0000-0001-5185-4805</orcidid><orcidid>https://orcid.org/0000-0001-9788-7987</orcidid><orcidid>https://orcid.org/0000-0001-9222-472X</orcidid><orcidid>https://orcid.org/0000-0001-9166-6286</orcidid><orcidid>https://orcid.org/0000-0003-4476-2122</orcidid><orcidid>https://orcid.org/0000-0003-4230-1330</orcidid><orcidid>https://orcid.org/0009-0005-0050-6567</orcidid><orcidid>https://orcid.org/0000-0002-0503-0175</orcidid><orcidid>https://orcid.org/0000-0002-2860-4653</orcidid><orcidid>https://orcid.org/0000-0001-5182-9976</orcidid><orcidid>https://orcid.org/0000-0001-5061-2038</orcidid><orcidid>https://orcid.org/0000-0001-8531-0849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-8422 |
ispartof | ArXiv.org, 2024-11 |
issn | 2331-8422 2331-8422 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11623708 |
source | Free E- Journals |
title | Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20the%20Head%20and%20Neck%20Tumor%20Segmentation%20for%20Magnetic%20Resonance%20Guided%20Applications%20(HNTS-MRG)%202024%20Challenge&rft.jtitle=ArXiv.org&rft.au=Wahid,%20Kareem%20A&rft.date=2024-11-28&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3146605327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146605327&rft_id=info:pmid/39650598&rfr_iscdi=true |