An off-lattice discrete model to characterise filamentous yeast colony morphology

We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2024-11, Vol.20 (11), p.e1012605
Hauptverfasser: Li, Kai, Green, J Edward F, Tronnolone, Hayden, Tam, Alexander K Y, Black, Andrew J, Gardner, Jennifer M, Sundstrom, Joanna F, Jiranek, Vladimir, Binder, Benjamin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e1012605
container_title PLoS computational biology
container_volume 20
creator Li, Kai
Green, J Edward F
Tronnolone, Hayden
Tam, Alexander K Y
Black, Andrew J
Gardner, Jennifer M
Sundstrom, Joanna F
Jiranek, Vladimir
Binder, Benjamin J
description We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
doi_str_mv 10.1371/journal.pcbi.1012605
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11620580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818924383</galeid><doaj_id>oai_doaj_org_article_363142b3aa7b4bd9baea5b9aba73b3e4</doaj_id><sourcerecordid>A818924383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-3079b1917d3028acf52a895f0b6fb96a727d9a68ce97631b927dc13b2abbd7543</originalsourceid><addsrcrecordid>eNqVkk-P0zAQxSMEYpeFb4BQjnBIseM4tk-oWsFSaQXi39kaO5M2lRMX21nRb78uLavtEfngsf3eT57RK4rXlCwoE_T91s9hArfYWTMsKKF1S_iT4pJyzirBuHz6qL4oXsS4JSSXqn1eXDDFBVGSXBbfllPp-75ykNJgseyGaAMmLEffoSuTL-0GAtiEYYhY9oODEafk51juEWIqrXd-2md52G1yud6_LJ714CK-Ou1Xxa9PH39ef65uv96srpe3lW1amipGhDJUUdExUkuwPa9BKt4T0_ZGtSBq0SlopUUlWkaNymdLmanBmE7whl0VqyO387DVuzCMEPbaw6D_Xviw1hByTw41y4CmNgxAmMZ0ygACNwoMCGYYHlgfjqzdbEbsbO4wgDuDnr9Mw0av_Z2mtK0JlyQT3p4Iwf-eMSY95kmiczBhHpZmlFHZyJrTLF0cpWvIfxum3mekzavDcbB-wjxk1EtJpaobJlk2vDszZE3CP2kNc4x69eP7f2i_nGubo9YGH2PA_qFhSvQhY_qUMX3ImD5lLNvePB7Wg-lfqNg9yLfQwA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131848251</pqid></control><display><type>article</type><title>An off-lattice discrete model to characterise filamentous yeast colony morphology</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Kai ; Green, J Edward F ; Tronnolone, Hayden ; Tam, Alexander K Y ; Black, Andrew J ; Gardner, Jennifer M ; Sundstrom, Joanna F ; Jiranek, Vladimir ; Binder, Benjamin J</creator><contributor>Csikász-Nagy, Attila</contributor><creatorcontrib>Li, Kai ; Green, J Edward F ; Tronnolone, Hayden ; Tam, Alexander K Y ; Black, Andrew J ; Gardner, Jennifer M ; Sundstrom, Joanna F ; Jiranek, Vladimir ; Binder, Benjamin J ; Csikász-Nagy, Attila</creatorcontrib><description>We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012605</identifier><identifier>PMID: 39570980</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Biology and Life Sciences ; Computational Biology ; Computer Simulation ; Mathematical models ; Medicine and Health Sciences ; Microbial colonies ; Models, Biological ; Physical Sciences ; Research and Analysis Methods ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - growth &amp; development ; Simulation methods ; Yeast fungi</subject><ispartof>PLoS computational biology, 2024-11, Vol.20 (11), p.e1012605</ispartof><rights>Copyright: © 2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Li et al 2024 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c461t-3079b1917d3028acf52a895f0b6fb96a727d9a68ce97631b927dc13b2abbd7543</cites><orcidid>0000-0001-5061-9563 ; 0000-0002-9775-8963 ; 0000-0002-4898-3101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620580/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620580/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39570980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Csikász-Nagy, Attila</contributor><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Green, J Edward F</creatorcontrib><creatorcontrib>Tronnolone, Hayden</creatorcontrib><creatorcontrib>Tam, Alexander K Y</creatorcontrib><creatorcontrib>Black, Andrew J</creatorcontrib><creatorcontrib>Gardner, Jennifer M</creatorcontrib><creatorcontrib>Sundstrom, Joanna F</creatorcontrib><creatorcontrib>Jiranek, Vladimir</creatorcontrib><creatorcontrib>Binder, Benjamin J</creatorcontrib><title>An off-lattice discrete model to characterise filamentous yeast colony morphology</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.</description><subject>Bayes Theorem</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Microbial colonies</subject><subject>Models, Biological</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Simulation methods</subject><subject>Yeast fungi</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk-P0zAQxSMEYpeFb4BQjnBIseM4tk-oWsFSaQXi39kaO5M2lRMX21nRb78uLavtEfngsf3eT57RK4rXlCwoE_T91s9hArfYWTMsKKF1S_iT4pJyzirBuHz6qL4oXsS4JSSXqn1eXDDFBVGSXBbfllPp-75ykNJgseyGaAMmLEffoSuTL-0GAtiEYYhY9oODEafk51juEWIqrXd-2md52G1yud6_LJ714CK-Ou1Xxa9PH39ef65uv96srpe3lW1amipGhDJUUdExUkuwPa9BKt4T0_ZGtSBq0SlopUUlWkaNymdLmanBmE7whl0VqyO387DVuzCMEPbaw6D_Xviw1hByTw41y4CmNgxAmMZ0ygACNwoMCGYYHlgfjqzdbEbsbO4wgDuDnr9Mw0av_Z2mtK0JlyQT3p4Iwf-eMSY95kmiczBhHpZmlFHZyJrTLF0cpWvIfxum3mekzavDcbB-wjxk1EtJpaobJlk2vDszZE3CP2kNc4x69eP7f2i_nGubo9YGH2PA_qFhSvQhY_qUMX3ImD5lLNvePB7Wg-lfqNg9yLfQwA</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Li, Kai</creator><creator>Green, J Edward F</creator><creator>Tronnolone, Hayden</creator><creator>Tam, Alexander K Y</creator><creator>Black, Andrew J</creator><creator>Gardner, Jennifer M</creator><creator>Sundstrom, Joanna F</creator><creator>Jiranek, Vladimir</creator><creator>Binder, Benjamin J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5061-9563</orcidid><orcidid>https://orcid.org/0000-0002-9775-8963</orcidid><orcidid>https://orcid.org/0000-0002-4898-3101</orcidid></search><sort><creationdate>20241121</creationdate><title>An off-lattice discrete model to characterise filamentous yeast colony morphology</title><author>Li, Kai ; Green, J Edward F ; Tronnolone, Hayden ; Tam, Alexander K Y ; Black, Andrew J ; Gardner, Jennifer M ; Sundstrom, Joanna F ; Jiranek, Vladimir ; Binder, Benjamin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-3079b1917d3028acf52a895f0b6fb96a727d9a68ce97631b927dc13b2abbd7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Microbial colonies</topic><topic>Models, Biological</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Simulation methods</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Green, J Edward F</creatorcontrib><creatorcontrib>Tronnolone, Hayden</creatorcontrib><creatorcontrib>Tam, Alexander K Y</creatorcontrib><creatorcontrib>Black, Andrew J</creatorcontrib><creatorcontrib>Gardner, Jennifer M</creatorcontrib><creatorcontrib>Sundstrom, Joanna F</creatorcontrib><creatorcontrib>Jiranek, Vladimir</creatorcontrib><creatorcontrib>Binder, Benjamin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kai</au><au>Green, J Edward F</au><au>Tronnolone, Hayden</au><au>Tam, Alexander K Y</au><au>Black, Andrew J</au><au>Gardner, Jennifer M</au><au>Sundstrom, Joanna F</au><au>Jiranek, Vladimir</au><au>Binder, Benjamin J</au><au>Csikász-Nagy, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An off-lattice discrete model to characterise filamentous yeast colony morphology</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-11-21</date><risdate>2024</risdate><volume>20</volume><issue>11</issue><spage>e1012605</spage><pages>e1012605-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39570980</pmid><doi>10.1371/journal.pcbi.1012605</doi><tpages>e1012605</tpages><orcidid>https://orcid.org/0000-0001-5061-9563</orcidid><orcidid>https://orcid.org/0000-0002-9775-8963</orcidid><orcidid>https://orcid.org/0000-0002-4898-3101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-11, Vol.20 (11), p.e1012605
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11620580
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bayes Theorem
Biology and Life Sciences
Computational Biology
Computer Simulation
Mathematical models
Medicine and Health Sciences
Microbial colonies
Models, Biological
Physical Sciences
Research and Analysis Methods
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - growth & development
Simulation methods
Yeast fungi
title An off-lattice discrete model to characterise filamentous yeast colony morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20off-lattice%20discrete%20model%20to%20characterise%20filamentous%20yeast%20colony%20morphology&rft.jtitle=PLoS%20computational%20biology&rft.au=Li,%20Kai&rft.date=2024-11-21&rft.volume=20&rft.issue=11&rft.spage=e1012605&rft.pages=e1012605-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012605&rft_dat=%3Cgale_doaj_%3EA818924383%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131848251&rft_id=info:pmid/39570980&rft_galeid=A818924383&rft_doaj_id=oai_doaj_org_article_363142b3aa7b4bd9baea5b9aba73b3e4&rfr_iscdi=true