Atomic Dispersed Co on NC@Cu Core‐Shells for Solar Seawater Splitting
With freshwater resources becoming increasingly scarce, the photocatalytic seawater splitting for hydrogen production has garnered widespread attention. In this study, a novel photocatalyst consisting of a Cu core coated is introduced with N‐doped C and decorated with single Co atoms (Co‐NC@Cu) for...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-12, Vol.36 (49), p.e2406088-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | e2406088 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Sun, Zhehao Cheng, Shuwen Jing, Xuechen Liu, Kaili Chen, Yi‐Lun Wibowo, Ary Anggara Yin, Hang Usman, Muhammad MacDonald, Daniel Cheong, Soshan Webster, Richard F. Gloag, Lucy Cox, Nicholas Tilley, Richard D. Yin, Zongyou |
description | With freshwater resources becoming increasingly scarce, the photocatalytic seawater splitting for hydrogen production has garnered widespread attention. In this study, a novel photocatalyst consisting of a Cu core coated is introduced with N‐doped C and decorated with single Co atoms (Co‐NC@Cu) for solar to hydrogen production from seawater. This catalyst, without using noble metals or sacrificial agents, demonstrates superior hydrogen production effficiency of 9080 µmolg−1h−1, i.e., 4.78% solar‐to‐hydrogen conversion efficiency, and exceptional long‐term stability, operating over 340 h continuously. The superior performance is attributed to several key factors. First, the focus‐light induced photothermal effect enhances redox reaction capabilities, while the salt‐ions enabled charge polarization around catalyst surfaces extends charge carrier lifetime. Furthermore, the Co─NC@Cu exhibits excellent broad light absorption, promoting photoexcited charge production. Theoretical calculations reveal that Co─NC acts as the active site, showing low energy barriers for reduction reactions. Additionally, the formation of a strong surface electric field from the localized surface plasmon resonance (LSPR) of Cu nanoparticles further reduces energy barriers for redox reactions, improving seawater splitting activity. This work provides valuable insights into intergrating the reaction environment, broad solar absorption, LSPR, and active single atoms into a core‐shell photocatalyst design for efficient and robust solar‐driven seawater splitting.
A core‐shell photocatalyst comprising atomic‐dispersed Co and plasmonic Cu nanoparticles is developed for efficient photocatalytic hydrogen production from seawater. This photocatalyst achieves strong synergy between the reaction environment, broad light absorption, plasmonic electric field, and active atomic sites, thereby enabling optimal seawater hydrogen production through redox reactions. |
doi_str_mv | 10.1002/adma.202406088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11619220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116676410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-dd28e92aaf1a6d5a262e02bcf90d7b385a04b13f08d0ba351e582f04d37ea82d3</originalsourceid><addsrcrecordid>eNqFkcFO3DAURS1UBFPaLUsUqRs2GZ7txGOv2lFoAQnaBe3acuIXMEriqZ0Usesn9Bv7JfVoYCjddGM_ycdH7-oSckhhTgHYibG9mTNgBQiQcofMaMloXoAqX5EZKF7mShRyn7yO8Q4AlACxR_a5KoAthJyRs-Xoe9dkpy6uMES0WeUzP2Sfqw_VlOaAv3_-ur7FrotZ60N27TuTTjT3ZsQ0rDo3jm64eUN2W9NFfPt4H5Bvnz5-rc7zyy9nF9XyMm94WcjcWiZRMWNaaoQtDRMMgdVNq8Auai5LA0VNeQvSQm14SbGUrIXC8gUaySw_IO833tVU92gbHMZgOr0KrjfhQXvj9MuXwd3qG_9DUyqoYgyS4fjREPz3CeOoexebFNAM6KeoeSLFQhR0jb77B73zUxhSvkQlACSTIlHzDdUEH2PAdrsNBb0uSa9L0tuS0oejvzNs8adWEqA2wL3r8OE_Or08vVo-y_8A0vCeSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141008286</pqid></control><display><type>article</type><title>Atomic Dispersed Co on NC@Cu Core‐Shells for Solar Seawater Splitting</title><source>Access via Wiley Online Library</source><creator>Sun, Zhehao ; Cheng, Shuwen ; Jing, Xuechen ; Liu, Kaili ; Chen, Yi‐Lun ; Wibowo, Ary Anggara ; Yin, Hang ; Usman, Muhammad ; MacDonald, Daniel ; Cheong, Soshan ; Webster, Richard F. ; Gloag, Lucy ; Cox, Nicholas ; Tilley, Richard D. ; Yin, Zongyou</creator><creatorcontrib>Sun, Zhehao ; Cheng, Shuwen ; Jing, Xuechen ; Liu, Kaili ; Chen, Yi‐Lun ; Wibowo, Ary Anggara ; Yin, Hang ; Usman, Muhammad ; MacDonald, Daniel ; Cheong, Soshan ; Webster, Richard F. ; Gloag, Lucy ; Cox, Nicholas ; Tilley, Richard D. ; Yin, Zongyou</creatorcontrib><description>With freshwater resources becoming increasingly scarce, the photocatalytic seawater splitting for hydrogen production has garnered widespread attention. In this study, a novel photocatalyst consisting of a Cu core coated is introduced with N‐doped C and decorated with single Co atoms (Co‐NC@Cu) for solar to hydrogen production from seawater. This catalyst, without using noble metals or sacrificial agents, demonstrates superior hydrogen production effficiency of 9080 µmolg−1h−1, i.e., 4.78% solar‐to‐hydrogen conversion efficiency, and exceptional long‐term stability, operating over 340 h continuously. The superior performance is attributed to several key factors. First, the focus‐light induced photothermal effect enhances redox reaction capabilities, while the salt‐ions enabled charge polarization around catalyst surfaces extends charge carrier lifetime. Furthermore, the Co─NC@Cu exhibits excellent broad light absorption, promoting photoexcited charge production. Theoretical calculations reveal that Co─NC acts as the active site, showing low energy barriers for reduction reactions. Additionally, the formation of a strong surface electric field from the localized surface plasmon resonance (LSPR) of Cu nanoparticles further reduces energy barriers for redox reactions, improving seawater splitting activity. This work provides valuable insights into intergrating the reaction environment, broad solar absorption, LSPR, and active single atoms into a core‐shell photocatalyst design for efficient and robust solar‐driven seawater splitting.
A core‐shell photocatalyst comprising atomic‐dispersed Co and plasmonic Cu nanoparticles is developed for efficient photocatalytic hydrogen production from seawater. This photocatalyst achieves strong synergy between the reaction environment, broad light absorption, plasmonic electric field, and active atomic sites, thereby enabling optimal seawater hydrogen production through redox reactions.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202406088</identifier><identifier>PMID: 39402768</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier lifetime ; Catalysts ; Chemical reduction ; Co single atom ; Copper ; Current carriers ; Electric fields ; Electromagnetic absorption ; Hydrogen production ; local electric field ; Noble metals ; non‐noble metal photocatalyst ; Photocatalysis ; Photocatalysts ; Photothermal conversion ; Redox reactions ; Seawater ; seawater splitting ; solar to hydrogen ; Splitting ; Surface chemistry ; Surface plasmon resonance</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (49), p.e2406088-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3548-dd28e92aaf1a6d5a262e02bcf90d7b385a04b13f08d0ba351e582f04d37ea82d3</cites><orcidid>0000-0002-0800-4490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202406088$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202406088$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39402768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhehao</creatorcontrib><creatorcontrib>Cheng, Shuwen</creatorcontrib><creatorcontrib>Jing, Xuechen</creatorcontrib><creatorcontrib>Liu, Kaili</creatorcontrib><creatorcontrib>Chen, Yi‐Lun</creatorcontrib><creatorcontrib>Wibowo, Ary Anggara</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>MacDonald, Daniel</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Webster, Richard F.</creatorcontrib><creatorcontrib>Gloag, Lucy</creatorcontrib><creatorcontrib>Cox, Nicholas</creatorcontrib><creatorcontrib>Tilley, Richard D.</creatorcontrib><creatorcontrib>Yin, Zongyou</creatorcontrib><title>Atomic Dispersed Co on NC@Cu Core‐Shells for Solar Seawater Splitting</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>With freshwater resources becoming increasingly scarce, the photocatalytic seawater splitting for hydrogen production has garnered widespread attention. In this study, a novel photocatalyst consisting of a Cu core coated is introduced with N‐doped C and decorated with single Co atoms (Co‐NC@Cu) for solar to hydrogen production from seawater. This catalyst, without using noble metals or sacrificial agents, demonstrates superior hydrogen production effficiency of 9080 µmolg−1h−1, i.e., 4.78% solar‐to‐hydrogen conversion efficiency, and exceptional long‐term stability, operating over 340 h continuously. The superior performance is attributed to several key factors. First, the focus‐light induced photothermal effect enhances redox reaction capabilities, while the salt‐ions enabled charge polarization around catalyst surfaces extends charge carrier lifetime. Furthermore, the Co─NC@Cu exhibits excellent broad light absorption, promoting photoexcited charge production. Theoretical calculations reveal that Co─NC acts as the active site, showing low energy barriers for reduction reactions. Additionally, the formation of a strong surface electric field from the localized surface plasmon resonance (LSPR) of Cu nanoparticles further reduces energy barriers for redox reactions, improving seawater splitting activity. This work provides valuable insights into intergrating the reaction environment, broad solar absorption, LSPR, and active single atoms into a core‐shell photocatalyst design for efficient and robust solar‐driven seawater splitting.
A core‐shell photocatalyst comprising atomic‐dispersed Co and plasmonic Cu nanoparticles is developed for efficient photocatalytic hydrogen production from seawater. This photocatalyst achieves strong synergy between the reaction environment, broad light absorption, plasmonic electric field, and active atomic sites, thereby enabling optimal seawater hydrogen production through redox reactions.</description><subject>Carrier lifetime</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Co single atom</subject><subject>Copper</subject><subject>Current carriers</subject><subject>Electric fields</subject><subject>Electromagnetic absorption</subject><subject>Hydrogen production</subject><subject>local electric field</subject><subject>Noble metals</subject><subject>non‐noble metal photocatalyst</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photothermal conversion</subject><subject>Redox reactions</subject><subject>Seawater</subject><subject>seawater splitting</subject><subject>solar to hydrogen</subject><subject>Splitting</subject><subject>Surface chemistry</subject><subject>Surface plasmon resonance</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcFO3DAURS1UBFPaLUsUqRs2GZ7txGOv2lFoAQnaBe3acuIXMEriqZ0Usesn9Bv7JfVoYCjddGM_ycdH7-oSckhhTgHYibG9mTNgBQiQcofMaMloXoAqX5EZKF7mShRyn7yO8Q4AlACxR_a5KoAthJyRs-Xoe9dkpy6uMES0WeUzP2Sfqw_VlOaAv3_-ur7FrotZ60N27TuTTjT3ZsQ0rDo3jm64eUN2W9NFfPt4H5Bvnz5-rc7zyy9nF9XyMm94WcjcWiZRMWNaaoQtDRMMgdVNq8Auai5LA0VNeQvSQm14SbGUrIXC8gUaySw_IO833tVU92gbHMZgOr0KrjfhQXvj9MuXwd3qG_9DUyqoYgyS4fjREPz3CeOoexebFNAM6KeoeSLFQhR0jb77B73zUxhSvkQlACSTIlHzDdUEH2PAdrsNBb0uSa9L0tuS0oejvzNs8adWEqA2wL3r8OE_Or08vVo-y_8A0vCeSw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Sun, Zhehao</creator><creator>Cheng, Shuwen</creator><creator>Jing, Xuechen</creator><creator>Liu, Kaili</creator><creator>Chen, Yi‐Lun</creator><creator>Wibowo, Ary Anggara</creator><creator>Yin, Hang</creator><creator>Usman, Muhammad</creator><creator>MacDonald, Daniel</creator><creator>Cheong, Soshan</creator><creator>Webster, Richard F.</creator><creator>Gloag, Lucy</creator><creator>Cox, Nicholas</creator><creator>Tilley, Richard D.</creator><creator>Yin, Zongyou</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0800-4490</orcidid></search><sort><creationdate>202412</creationdate><title>Atomic Dispersed Co on NC@Cu Core‐Shells for Solar Seawater Splitting</title><author>Sun, Zhehao ; Cheng, Shuwen ; Jing, Xuechen ; Liu, Kaili ; Chen, Yi‐Lun ; Wibowo, Ary Anggara ; Yin, Hang ; Usman, Muhammad ; MacDonald, Daniel ; Cheong, Soshan ; Webster, Richard F. ; Gloag, Lucy ; Cox, Nicholas ; Tilley, Richard D. ; Yin, Zongyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-dd28e92aaf1a6d5a262e02bcf90d7b385a04b13f08d0ba351e582f04d37ea82d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier lifetime</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Co single atom</topic><topic>Copper</topic><topic>Current carriers</topic><topic>Electric fields</topic><topic>Electromagnetic absorption</topic><topic>Hydrogen production</topic><topic>local electric field</topic><topic>Noble metals</topic><topic>non‐noble metal photocatalyst</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photothermal conversion</topic><topic>Redox reactions</topic><topic>Seawater</topic><topic>seawater splitting</topic><topic>solar to hydrogen</topic><topic>Splitting</topic><topic>Surface chemistry</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhehao</creatorcontrib><creatorcontrib>Cheng, Shuwen</creatorcontrib><creatorcontrib>Jing, Xuechen</creatorcontrib><creatorcontrib>Liu, Kaili</creatorcontrib><creatorcontrib>Chen, Yi‐Lun</creatorcontrib><creatorcontrib>Wibowo, Ary Anggara</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>MacDonald, Daniel</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Webster, Richard F.</creatorcontrib><creatorcontrib>Gloag, Lucy</creatorcontrib><creatorcontrib>Cox, Nicholas</creatorcontrib><creatorcontrib>Tilley, Richard D.</creatorcontrib><creatorcontrib>Yin, Zongyou</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhehao</au><au>Cheng, Shuwen</au><au>Jing, Xuechen</au><au>Liu, Kaili</au><au>Chen, Yi‐Lun</au><au>Wibowo, Ary Anggara</au><au>Yin, Hang</au><au>Usman, Muhammad</au><au>MacDonald, Daniel</au><au>Cheong, Soshan</au><au>Webster, Richard F.</au><au>Gloag, Lucy</au><au>Cox, Nicholas</au><au>Tilley, Richard D.</au><au>Yin, Zongyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Dispersed Co on NC@Cu Core‐Shells for Solar Seawater Splitting</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>49</issue><spage>e2406088</spage><epage>n/a</epage><pages>e2406088-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>With freshwater resources becoming increasingly scarce, the photocatalytic seawater splitting for hydrogen production has garnered widespread attention. In this study, a novel photocatalyst consisting of a Cu core coated is introduced with N‐doped C and decorated with single Co atoms (Co‐NC@Cu) for solar to hydrogen production from seawater. This catalyst, without using noble metals or sacrificial agents, demonstrates superior hydrogen production effficiency of 9080 µmolg−1h−1, i.e., 4.78% solar‐to‐hydrogen conversion efficiency, and exceptional long‐term stability, operating over 340 h continuously. The superior performance is attributed to several key factors. First, the focus‐light induced photothermal effect enhances redox reaction capabilities, while the salt‐ions enabled charge polarization around catalyst surfaces extends charge carrier lifetime. Furthermore, the Co─NC@Cu exhibits excellent broad light absorption, promoting photoexcited charge production. Theoretical calculations reveal that Co─NC acts as the active site, showing low energy barriers for reduction reactions. Additionally, the formation of a strong surface electric field from the localized surface plasmon resonance (LSPR) of Cu nanoparticles further reduces energy barriers for redox reactions, improving seawater splitting activity. This work provides valuable insights into intergrating the reaction environment, broad solar absorption, LSPR, and active single atoms into a core‐shell photocatalyst design for efficient and robust solar‐driven seawater splitting.
A core‐shell photocatalyst comprising atomic‐dispersed Co and plasmonic Cu nanoparticles is developed for efficient photocatalytic hydrogen production from seawater. This photocatalyst achieves strong synergy between the reaction environment, broad light absorption, plasmonic electric field, and active atomic sites, thereby enabling optimal seawater hydrogen production through redox reactions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39402768</pmid><doi>10.1002/adma.202406088</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0800-4490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-12, Vol.36 (49), p.e2406088-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11619220 |
source | Access via Wiley Online Library |
subjects | Carrier lifetime Catalysts Chemical reduction Co single atom Copper Current carriers Electric fields Electromagnetic absorption Hydrogen production local electric field Noble metals non‐noble metal photocatalyst Photocatalysis Photocatalysts Photothermal conversion Redox reactions Seawater seawater splitting solar to hydrogen Splitting Surface chemistry Surface plasmon resonance |
title | Atomic Dispersed Co on NC@Cu Core‐Shells for Solar Seawater Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Dispersed%20Co%20on%20NC@Cu%20Core%E2%80%90Shells%20for%20Solar%20Seawater%20Splitting&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Sun,%20Zhehao&rft.date=2024-12&rft.volume=36&rft.issue=49&rft.spage=e2406088&rft.epage=n/a&rft.pages=e2406088-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202406088&rft_dat=%3Cproquest_pubme%3E3116676410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141008286&rft_id=info:pmid/39402768&rfr_iscdi=true |