Piloting a Novel Computational Framework for Identifying Prosthesis‐Specific Contributions to Gait Deviations

ABSTRACT This paper introduces a novel computational framework for evaluating above‐knee prostheses, addressing a major challenge in gait deviation studies: distinguishing between prosthesis‐specific and patient‐specific contributions to gait deviations. This innovative approach utilizes three separ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2024-12, Vol.40 (12), p.e3876-n/a
Hauptverfasser: N'Guessan, Jacques‐Ezechiel, Ahmed, Muhammad Hassaan, Leineweber, Matthew, Goyal, Sachin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e3876
container_title International journal for numerical methods in biomedical engineering
container_volume 40
creator N'Guessan, Jacques‐Ezechiel
Ahmed, Muhammad Hassaan
Leineweber, Matthew
Goyal, Sachin
description ABSTRACT This paper introduces a novel computational framework for evaluating above‐knee prostheses, addressing a major challenge in gait deviation studies: distinguishing between prosthesis‐specific and patient‐specific contributions to gait deviations. This innovative approach utilizes three separate computational models to quantify the changes in gait dynamics necessary to achieve a set of ideal gait kinematics across different prosthesis designs. The pilot study presented here employs a simple two‐dimensional swing‐phase model to conceptually demonstrate how the outcomes of this three‐model framework can assess the extent to which prosthesis design impacts a user's ability to replicate the dynamics of able‐bodied gait. Furthermore, this framework offers potential for optimizing passive prosthetic devices for individual patients, thereby reducing the need for real‐life experiments, clinic visits, and overcoming rehabilitation challenges. This study introduces a novel computational framework to isolate prosthesis‐specific impacts on gait deviations from patient‐specific factors. The framework quantifies and compares gait dynamics utilizing three distinct models to characterize and understand the sources of these deviations. Using a two‐dimensional swing‐phase model, this pilot study demonstrates how prosthetic design influences a user's ability to replicate able‐bodied gait, offering the potential for optimizing prosthetic devices without extensive real‐life testing.
doi_str_mv 10.1002/cnm.3876
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140719735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3306-d0abeedd3b5e9b944d24dd13ce46f52cd900b4345ceea5b41bc6227dba2001443</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMottSCVyABN26m5m9mTlYiR1sLtS2o65Cfb9rUmckxyZxydr2EXqNXYqath1YwmwTyfA8f74vQa0oOKCHsvR2HA75om2dolxFBqlaK9vn2zeUO2k_pipTDpJQtf4l2uOQLKVmzi8K570P24wXW-DSsocfLMKymrLMPo-7xYdQDXIf4E3ch4mMHY_bdZubPY0j5EpJPv29uv63A-s7bMj3m6M00jyecAz7SPuNPsPZ3xvQKveh0n2D_4d5DPw4_f19-qU7Ojo6XH08qyzlpKke0AXCOmxqkkUI4Jpyj3IJouppZJwkxgovaAujaCGpsw1jrjGaEUCH4Hvpw711NZgBny95R92oV_aDjRgXt1dOf0V-qi7BWlDZ0wXhdDO8eDDH8miBlNfhkoe_1CGFKilNa14S0vCno23_QqzDFEt9MCdLSkvojoS3JpQjddhtK1NykKk2qucmCvnm8_Rb821sBqnvg2vew-a9ILU-_3gn_AJb9qxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140719735</pqid></control><display><type>article</type><title>Piloting a Novel Computational Framework for Identifying Prosthesis‐Specific Contributions to Gait Deviations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>N'Guessan, Jacques‐Ezechiel ; Ahmed, Muhammad Hassaan ; Leineweber, Matthew ; Goyal, Sachin</creator><creatorcontrib>N'Guessan, Jacques‐Ezechiel ; Ahmed, Muhammad Hassaan ; Leineweber, Matthew ; Goyal, Sachin</creatorcontrib><description>ABSTRACT This paper introduces a novel computational framework for evaluating above‐knee prostheses, addressing a major challenge in gait deviation studies: distinguishing between prosthesis‐specific and patient‐specific contributions to gait deviations. This innovative approach utilizes three separate computational models to quantify the changes in gait dynamics necessary to achieve a set of ideal gait kinematics across different prosthesis designs. The pilot study presented here employs a simple two‐dimensional swing‐phase model to conceptually demonstrate how the outcomes of this three‐model framework can assess the extent to which prosthesis design impacts a user's ability to replicate the dynamics of able‐bodied gait. Furthermore, this framework offers potential for optimizing passive prosthetic devices for individual patients, thereby reducing the need for real‐life experiments, clinic visits, and overcoming rehabilitation challenges. This study introduces a novel computational framework to isolate prosthesis‐specific impacts on gait deviations from patient‐specific factors. The framework quantifies and compares gait dynamics utilizing three distinct models to characterize and understand the sources of these deviations. Using a two‐dimensional swing‐phase model, this pilot study demonstrates how prosthetic design influences a user's ability to replicate able‐bodied gait, offering the potential for optimizing prosthetic devices without extensive real‐life testing.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3876</identifier><identifier>PMID: 39389926</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial Limbs ; Basic Research ; Biomechanical Phenomena - physiology ; biomechanics ; Computer applications ; Computer Simulation ; Deviation ; Gait ; Gait - physiology ; gait deviations ; Humans ; Kinematics ; Male ; Mathematical models ; Pilot Projects ; Prostheses ; Prosthesis Design ; Prosthetics ; swing phase ; transfemoral prosthesis</subject><ispartof>International journal for numerical methods in biomedical engineering, 2024-12, Vol.40 (12), p.e3876-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3306-d0abeedd3b5e9b944d24dd13ce46f52cd900b4345ceea5b41bc6227dba2001443</cites><orcidid>0000-0002-9773-6086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3876$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3876$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39389926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>N'Guessan, Jacques‐Ezechiel</creatorcontrib><creatorcontrib>Ahmed, Muhammad Hassaan</creatorcontrib><creatorcontrib>Leineweber, Matthew</creatorcontrib><creatorcontrib>Goyal, Sachin</creatorcontrib><title>Piloting a Novel Computational Framework for Identifying Prosthesis‐Specific Contributions to Gait Deviations</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>ABSTRACT This paper introduces a novel computational framework for evaluating above‐knee prostheses, addressing a major challenge in gait deviation studies: distinguishing between prosthesis‐specific and patient‐specific contributions to gait deviations. This innovative approach utilizes three separate computational models to quantify the changes in gait dynamics necessary to achieve a set of ideal gait kinematics across different prosthesis designs. The pilot study presented here employs a simple two‐dimensional swing‐phase model to conceptually demonstrate how the outcomes of this three‐model framework can assess the extent to which prosthesis design impacts a user's ability to replicate the dynamics of able‐bodied gait. Furthermore, this framework offers potential for optimizing passive prosthetic devices for individual patients, thereby reducing the need for real‐life experiments, clinic visits, and overcoming rehabilitation challenges. This study introduces a novel computational framework to isolate prosthesis‐specific impacts on gait deviations from patient‐specific factors. The framework quantifies and compares gait dynamics utilizing three distinct models to characterize and understand the sources of these deviations. Using a two‐dimensional swing‐phase model, this pilot study demonstrates how prosthetic design influences a user's ability to replicate able‐bodied gait, offering the potential for optimizing prosthetic devices without extensive real‐life testing.</description><subject>Artificial Limbs</subject><subject>Basic Research</subject><subject>Biomechanical Phenomena - physiology</subject><subject>biomechanics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Deviation</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>gait deviations</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Pilot Projects</subject><subject>Prostheses</subject><subject>Prosthesis Design</subject><subject>Prosthetics</subject><subject>swing phase</subject><subject>transfemoral prosthesis</subject><issn>2040-7939</issn><issn>2040-7947</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1qFTEYhoMottSCVyABN26m5m9mTlYiR1sLtS2o65Cfb9rUmckxyZxydr2EXqNXYqath1YwmwTyfA8f74vQa0oOKCHsvR2HA75om2dolxFBqlaK9vn2zeUO2k_pipTDpJQtf4l2uOQLKVmzi8K570P24wXW-DSsocfLMKymrLMPo-7xYdQDXIf4E3ch4mMHY_bdZubPY0j5EpJPv29uv63A-s7bMj3m6M00jyecAz7SPuNPsPZ3xvQKveh0n2D_4d5DPw4_f19-qU7Ojo6XH08qyzlpKke0AXCOmxqkkUI4Jpyj3IJouppZJwkxgovaAujaCGpsw1jrjGaEUCH4Hvpw711NZgBny95R92oV_aDjRgXt1dOf0V-qi7BWlDZ0wXhdDO8eDDH8miBlNfhkoe_1CGFKilNa14S0vCno23_QqzDFEt9MCdLSkvojoS3JpQjddhtK1NykKk2qucmCvnm8_Rb821sBqnvg2vew-a9ILU-_3gn_AJb9qxE</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>N'Guessan, Jacques‐Ezechiel</creator><creator>Ahmed, Muhammad Hassaan</creator><creator>Leineweber, Matthew</creator><creator>Goyal, Sachin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9773-6086</orcidid></search><sort><creationdate>202412</creationdate><title>Piloting a Novel Computational Framework for Identifying Prosthesis‐Specific Contributions to Gait Deviations</title><author>N'Guessan, Jacques‐Ezechiel ; Ahmed, Muhammad Hassaan ; Leineweber, Matthew ; Goyal, Sachin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3306-d0abeedd3b5e9b944d24dd13ce46f52cd900b4345ceea5b41bc6227dba2001443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Limbs</topic><topic>Basic Research</topic><topic>Biomechanical Phenomena - physiology</topic><topic>biomechanics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Deviation</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>gait deviations</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Pilot Projects</topic><topic>Prostheses</topic><topic>Prosthesis Design</topic><topic>Prosthetics</topic><topic>swing phase</topic><topic>transfemoral prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>N'Guessan, Jacques‐Ezechiel</creatorcontrib><creatorcontrib>Ahmed, Muhammad Hassaan</creatorcontrib><creatorcontrib>Leineweber, Matthew</creatorcontrib><creatorcontrib>Goyal, Sachin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>N'Guessan, Jacques‐Ezechiel</au><au>Ahmed, Muhammad Hassaan</au><au>Leineweber, Matthew</au><au>Goyal, Sachin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piloting a Novel Computational Framework for Identifying Prosthesis‐Specific Contributions to Gait Deviations</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2024-12</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><spage>e3876</spage><epage>n/a</epage><pages>e3876-n/a</pages><issn>2040-7939</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><abstract>ABSTRACT This paper introduces a novel computational framework for evaluating above‐knee prostheses, addressing a major challenge in gait deviation studies: distinguishing between prosthesis‐specific and patient‐specific contributions to gait deviations. This innovative approach utilizes three separate computational models to quantify the changes in gait dynamics necessary to achieve a set of ideal gait kinematics across different prosthesis designs. The pilot study presented here employs a simple two‐dimensional swing‐phase model to conceptually demonstrate how the outcomes of this three‐model framework can assess the extent to which prosthesis design impacts a user's ability to replicate the dynamics of able‐bodied gait. Furthermore, this framework offers potential for optimizing passive prosthetic devices for individual patients, thereby reducing the need for real‐life experiments, clinic visits, and overcoming rehabilitation challenges. This study introduces a novel computational framework to isolate prosthesis‐specific impacts on gait deviations from patient‐specific factors. The framework quantifies and compares gait dynamics utilizing three distinct models to characterize and understand the sources of these deviations. Using a two‐dimensional swing‐phase model, this pilot study demonstrates how prosthetic design influences a user's ability to replicate able‐bodied gait, offering the potential for optimizing prosthetic devices without extensive real‐life testing.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39389926</pmid><doi>10.1002/cnm.3876</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9773-6086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2024-12, Vol.40 (12), p.e3876-n/a
issn 2040-7939
2040-7947
2040-7947
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618235
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Artificial Limbs
Basic Research
Biomechanical Phenomena - physiology
biomechanics
Computer applications
Computer Simulation
Deviation
Gait
Gait - physiology
gait deviations
Humans
Kinematics
Male
Mathematical models
Pilot Projects
Prostheses
Prosthesis Design
Prosthetics
swing phase
transfemoral prosthesis
title Piloting a Novel Computational Framework for Identifying Prosthesis‐Specific Contributions to Gait Deviations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piloting%20a%20Novel%20Computational%20Framework%20for%20Identifying%20Prosthesis%E2%80%90Specific%20Contributions%20to%20Gait%20Deviations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=N'Guessan,%20Jacques%E2%80%90Ezechiel&rft.date=2024-12&rft.volume=40&rft.issue=12&rft.spage=e3876&rft.epage=n/a&rft.pages=e3876-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3876&rft_dat=%3Cproquest_pubme%3E3140719735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140719735&rft_id=info:pmid/39389926&rfr_iscdi=true