Potential compensatory mechanisms preserving cardiac function in myotubular myopathy

X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2024-12, Vol.81 (1), p.476-476, Article 476
Hauptverfasser: Simon, Alix, Diedhiou, Nadège, Reiss, David, Goret, Marie, Grandgirard, Erwan, Laporte, Jocelyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 1
container_start_page 476
container_title Cellular and molecular life sciences : CMLS
container_volume 81
creator Simon, Alix
Diedhiou, Nadège
Reiss, David
Goret, Marie
Grandgirard, Erwan
Laporte, Jocelyn
description X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1 −/y mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3 P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.
doi_str_mv 10.1007/s00018-024-05512-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11615164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140925212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c9ea85037d0be1e8966bdbe4d81d7339b59f39e539a7354ae11b7ee89655b4e43</originalsourceid><addsrcrecordid>eNqNkUFP3DAQha2qqFDgD_RQReqll4DHjp34VFWoLUhIcACJm-U4s7tGiZ3aCdL-e7zdhZYeECePNN88z5tHyCegJ0BpfZoopdCUlFUlFQJYqd6RA6gYLRWt4f2ulg272ycfU7rPtGiY_ED2uZJMCC4PyM11mNBPzvSFDcOIPpkpxHUxoF0Z79KQijFiwvjg_LKwJnbO2GIxezu54Avni2EdprmdexM35Wim1fqI7C1Mn_B49x6S258_bs7Oy8urXxdn3y9Lyxs1lVahaQTldUdbBGyUlG3XYtU10NWcq1aoBVcouDI1F5VBgLbGDSdEW2HFD8m3re44twN2NhuJptdjdIOJax2M0y873q30MjxoAAkC5Ebh604hht8zpkkPLlnse-MxzElzEFW-lGJvQSuqmGDAMvrlP_Q-zNHnU2QqW1dAZZ0ptqVsDClFXDwvDlRvAtbbgHUOWP8JWKs89Plfy88jT4lmgG-BlFt-ifHv36_IPgKCHrKq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138991067</pqid></control><display><type>article</type><title>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Simon, Alix ; Diedhiou, Nadège ; Reiss, David ; Goret, Marie ; Grandgirard, Erwan ; Laporte, Jocelyn</creator><creatorcontrib>Simon, Alix ; Diedhiou, Nadège ; Reiss, David ; Goret, Marie ; Grandgirard, Erwan ; Laporte, Jocelyn</creatorcontrib><description>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1 −/y mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3 P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05512-9</identifier><identifier>PMID: 39625536</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adhesion ; Adhesive strength ; Animals ; Biochemistry ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cardiac function ; Cardiac muscle ; cardiac output ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Adhesion - genetics ; Cell Biology ; Cellular structure ; Coronary artery disease ; Defects ; Disease Models, Animal ; Dynamin ; Dynamin II - genetics ; Dynamin II - metabolism ; dynamins ; Gene sequencing ; Heart diseases ; Hepatocytes ; In vivo methods and tests ; inflammation ; integrins ; Life expectancy ; Life Sciences ; Life span ; Liver ; Liver - metabolism ; Liver - pathology ; Liver diseases ; liver function ; longevity ; Male ; Mice ; Mice, Inbred C57BL ; mitochondria ; muscle development ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles ; muscular diseases ; Musculoskeletal system ; myocardium ; Myocardium - metabolism ; Myocardium - pathology ; Myopathies, Structural, Congenital - genetics ; Myopathies, Structural, Congenital - metabolism ; Myopathies, Structural, Congenital - pathology ; Myopathy ; Original ; Original Article ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; Protein Tyrosine Phosphatases, Non-Receptor - genetics ; Protein Tyrosine Phosphatases, Non-Receptor - metabolism ; sequence analysis ; Skeletal muscle ; Structural integrity ; Structure-function relationships ; Therapeutic targets ; therapeutics ; Transcriptomics</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.476-476, Article 476</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-c9ea85037d0be1e8966bdbe4d81d7339b59f39e539a7354ae11b7ee89655b4e43</cites><orcidid>0000-0001-8256-5862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615164/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615164/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,41464,42165,42533,51294,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39625536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Alix</creatorcontrib><creatorcontrib>Diedhiou, Nadège</creatorcontrib><creatorcontrib>Reiss, David</creatorcontrib><creatorcontrib>Goret, Marie</creatorcontrib><creatorcontrib>Grandgirard, Erwan</creatorcontrib><creatorcontrib>Laporte, Jocelyn</creatorcontrib><title>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1 −/y mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3 P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</description><subject>Adhesion</subject><subject>Adhesive strength</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cardiac function</subject><subject>Cardiac muscle</subject><subject>cardiac output</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Biology</subject><subject>Cellular structure</subject><subject>Coronary artery disease</subject><subject>Defects</subject><subject>Disease Models, Animal</subject><subject>Dynamin</subject><subject>Dynamin II - genetics</subject><subject>Dynamin II - metabolism</subject><subject>dynamins</subject><subject>Gene sequencing</subject><subject>Heart diseases</subject><subject>Hepatocytes</subject><subject>In vivo methods and tests</subject><subject>inflammation</subject><subject>integrins</subject><subject>Life expectancy</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver diseases</subject><subject>liver function</subject><subject>longevity</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>muscle development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>muscular diseases</subject><subject>Musculoskeletal system</subject><subject>myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myopathies, Structural, Congenital - genetics</subject><subject>Myopathies, Structural, Congenital - metabolism</subject><subject>Myopathies, Structural, Congenital - pathology</subject><subject>Myopathy</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - genetics</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</subject><subject>sequence analysis</subject><subject>Skeletal muscle</subject><subject>Structural integrity</subject><subject>Structure-function relationships</subject><subject>Therapeutic targets</subject><subject>therapeutics</subject><subject>Transcriptomics</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFP3DAQha2qqFDgD_RQReqll4DHjp34VFWoLUhIcACJm-U4s7tGiZ3aCdL-e7zdhZYeECePNN88z5tHyCegJ0BpfZoopdCUlFUlFQJYqd6RA6gYLRWt4f2ulg272ycfU7rPtGiY_ED2uZJMCC4PyM11mNBPzvSFDcOIPpkpxHUxoF0Z79KQijFiwvjg_LKwJnbO2GIxezu54Avni2EdprmdexM35Wim1fqI7C1Mn_B49x6S258_bs7Oy8urXxdn3y9Lyxs1lVahaQTldUdbBGyUlG3XYtU10NWcq1aoBVcouDI1F5VBgLbGDSdEW2HFD8m3re44twN2NhuJptdjdIOJax2M0y873q30MjxoAAkC5Ebh604hht8zpkkPLlnse-MxzElzEFW-lGJvQSuqmGDAMvrlP_Q-zNHnU2QqW1dAZZ0ptqVsDClFXDwvDlRvAtbbgHUOWP8JWKs89Plfy88jT4lmgG-BlFt-ifHv36_IPgKCHrKq</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Simon, Alix</creator><creator>Diedhiou, Nadège</creator><creator>Reiss, David</creator><creator>Goret, Marie</creator><creator>Grandgirard, Erwan</creator><creator>Laporte, Jocelyn</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8256-5862</orcidid></search><sort><creationdate>20241201</creationdate><title>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</title><author>Simon, Alix ; Diedhiou, Nadège ; Reiss, David ; Goret, Marie ; Grandgirard, Erwan ; Laporte, Jocelyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c9ea85037d0be1e8966bdbe4d81d7339b59f39e539a7354ae11b7ee89655b4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesion</topic><topic>Adhesive strength</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cardiac function</topic><topic>Cardiac muscle</topic><topic>cardiac output</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Biology</topic><topic>Cellular structure</topic><topic>Coronary artery disease</topic><topic>Defects</topic><topic>Disease Models, Animal</topic><topic>Dynamin</topic><topic>Dynamin II - genetics</topic><topic>Dynamin II - metabolism</topic><topic>dynamins</topic><topic>Gene sequencing</topic><topic>Heart diseases</topic><topic>Hepatocytes</topic><topic>In vivo methods and tests</topic><topic>inflammation</topic><topic>integrins</topic><topic>Life expectancy</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver diseases</topic><topic>liver function</topic><topic>longevity</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>muscle development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>muscular diseases</topic><topic>Musculoskeletal system</topic><topic>myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myopathies, Structural, Congenital - genetics</topic><topic>Myopathies, Structural, Congenital - metabolism</topic><topic>Myopathies, Structural, Congenital - pathology</topic><topic>Myopathy</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - genetics</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</topic><topic>sequence analysis</topic><topic>Skeletal muscle</topic><topic>Structural integrity</topic><topic>Structure-function relationships</topic><topic>Therapeutic targets</topic><topic>therapeutics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Alix</creatorcontrib><creatorcontrib>Diedhiou, Nadège</creatorcontrib><creatorcontrib>Reiss, David</creatorcontrib><creatorcontrib>Goret, Marie</creatorcontrib><creatorcontrib>Grandgirard, Erwan</creatorcontrib><creatorcontrib>Laporte, Jocelyn</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Alix</au><au>Diedhiou, Nadège</au><au>Reiss, David</au><au>Goret, Marie</au><au>Grandgirard, Erwan</au><au>Laporte, Jocelyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>476</spage><epage>476</epage><pages>476-476</pages><artnum>476</artnum><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1 −/y mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3 P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39625536</pmid><doi>10.1007/s00018-024-05512-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8256-5862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.476-476, Article 476
issn 1420-682X
1420-9071
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11615164
source MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Adhesion
Adhesive strength
Animals
Biochemistry
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cardiac function
Cardiac muscle
cardiac output
Cell adhesion
Cell adhesion & migration
Cell Adhesion - genetics
Cell Biology
Cellular structure
Coronary artery disease
Defects
Disease Models, Animal
Dynamin
Dynamin II - genetics
Dynamin II - metabolism
dynamins
Gene sequencing
Heart diseases
Hepatocytes
In vivo methods and tests
inflammation
integrins
Life expectancy
Life Sciences
Life span
Liver
Liver - metabolism
Liver - pathology
Liver diseases
liver function
longevity
Male
Mice
Mice, Inbred C57BL
mitochondria
muscle development
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscles
muscular diseases
Musculoskeletal system
myocardium
Myocardium - metabolism
Myocardium - pathology
Myopathies, Structural, Congenital - genetics
Myopathies, Structural, Congenital - metabolism
Myopathies, Structural, Congenital - pathology
Myopathy
Original
Original Article
Oxidative phosphorylation
Phenotypes
Phosphorylation
Protein Tyrosine Phosphatases, Non-Receptor - genetics
Protein Tyrosine Phosphatases, Non-Receptor - metabolism
sequence analysis
Skeletal muscle
Structural integrity
Structure-function relationships
Therapeutic targets
therapeutics
Transcriptomics
title Potential compensatory mechanisms preserving cardiac function in myotubular myopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20compensatory%20mechanisms%20preserving%20cardiac%20function%20in%20myotubular%20myopathy&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Simon,%20Alix&rft.date=2024-12-01&rft.volume=81&rft.issue=1&rft.spage=476&rft.epage=476&rft.pages=476-476&rft.artnum=476&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05512-9&rft_dat=%3Cproquest_pubme%3E3140925212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138991067&rft_id=info:pmid/39625536&rfr_iscdi=true