Potential compensatory mechanisms preserving cardiac function in myotubular myopathy
X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2024-12, Vol.81 (1), p.476-476, Article 476 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 1 |
container_start_page | 476 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 81 |
creator | Simon, Alix Diedhiou, Nadège Reiss, David Goret, Marie Grandgirard, Erwan Laporte, Jocelyn |
description | X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the
Mtm1
−/y
mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3
P
and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM. |
doi_str_mv | 10.1007/s00018-024-05512-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11615164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140925212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c9ea85037d0be1e8966bdbe4d81d7339b59f39e539a7354ae11b7ee89655b4e43</originalsourceid><addsrcrecordid>eNqNkUFP3DAQha2qqFDgD_RQReqll4DHjp34VFWoLUhIcACJm-U4s7tGiZ3aCdL-e7zdhZYeECePNN88z5tHyCegJ0BpfZoopdCUlFUlFQJYqd6RA6gYLRWt4f2ulg272ycfU7rPtGiY_ED2uZJMCC4PyM11mNBPzvSFDcOIPpkpxHUxoF0Z79KQijFiwvjg_LKwJnbO2GIxezu54Avni2EdprmdexM35Wim1fqI7C1Mn_B49x6S258_bs7Oy8urXxdn3y9Lyxs1lVahaQTldUdbBGyUlG3XYtU10NWcq1aoBVcouDI1F5VBgLbGDSdEW2HFD8m3re44twN2NhuJptdjdIOJax2M0y873q30MjxoAAkC5Ebh604hht8zpkkPLlnse-MxzElzEFW-lGJvQSuqmGDAMvrlP_Q-zNHnU2QqW1dAZZ0ptqVsDClFXDwvDlRvAtbbgHUOWP8JWKs89Plfy88jT4lmgG-BlFt-ifHv36_IPgKCHrKq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138991067</pqid></control><display><type>article</type><title>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Simon, Alix ; Diedhiou, Nadège ; Reiss, David ; Goret, Marie ; Grandgirard, Erwan ; Laporte, Jocelyn</creator><creatorcontrib>Simon, Alix ; Diedhiou, Nadège ; Reiss, David ; Goret, Marie ; Grandgirard, Erwan ; Laporte, Jocelyn</creatorcontrib><description>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the
Mtm1
−/y
mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3
P
and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05512-9</identifier><identifier>PMID: 39625536</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adhesion ; Adhesive strength ; Animals ; Biochemistry ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cardiac function ; Cardiac muscle ; cardiac output ; Cell adhesion ; Cell adhesion & migration ; Cell Adhesion - genetics ; Cell Biology ; Cellular structure ; Coronary artery disease ; Defects ; Disease Models, Animal ; Dynamin ; Dynamin II - genetics ; Dynamin II - metabolism ; dynamins ; Gene sequencing ; Heart diseases ; Hepatocytes ; In vivo methods and tests ; inflammation ; integrins ; Life expectancy ; Life Sciences ; Life span ; Liver ; Liver - metabolism ; Liver - pathology ; Liver diseases ; liver function ; longevity ; Male ; Mice ; Mice, Inbred C57BL ; mitochondria ; muscle development ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscles ; muscular diseases ; Musculoskeletal system ; myocardium ; Myocardium - metabolism ; Myocardium - pathology ; Myopathies, Structural, Congenital - genetics ; Myopathies, Structural, Congenital - metabolism ; Myopathies, Structural, Congenital - pathology ; Myopathy ; Original ; Original Article ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; Protein Tyrosine Phosphatases, Non-Receptor - genetics ; Protein Tyrosine Phosphatases, Non-Receptor - metabolism ; sequence analysis ; Skeletal muscle ; Structural integrity ; Structure-function relationships ; Therapeutic targets ; therapeutics ; Transcriptomics</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.476-476, Article 476</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-c9ea85037d0be1e8966bdbe4d81d7339b59f39e539a7354ae11b7ee89655b4e43</cites><orcidid>0000-0001-8256-5862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615164/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615164/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,41464,42165,42533,51294,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39625536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Alix</creatorcontrib><creatorcontrib>Diedhiou, Nadège</creatorcontrib><creatorcontrib>Reiss, David</creatorcontrib><creatorcontrib>Goret, Marie</creatorcontrib><creatorcontrib>Grandgirard, Erwan</creatorcontrib><creatorcontrib>Laporte, Jocelyn</creatorcontrib><title>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the
Mtm1
−/y
mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3
P
and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</description><subject>Adhesion</subject><subject>Adhesive strength</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cardiac function</subject><subject>Cardiac muscle</subject><subject>cardiac output</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Biology</subject><subject>Cellular structure</subject><subject>Coronary artery disease</subject><subject>Defects</subject><subject>Disease Models, Animal</subject><subject>Dynamin</subject><subject>Dynamin II - genetics</subject><subject>Dynamin II - metabolism</subject><subject>dynamins</subject><subject>Gene sequencing</subject><subject>Heart diseases</subject><subject>Hepatocytes</subject><subject>In vivo methods and tests</subject><subject>inflammation</subject><subject>integrins</subject><subject>Life expectancy</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver diseases</subject><subject>liver function</subject><subject>longevity</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>muscle development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>muscular diseases</subject><subject>Musculoskeletal system</subject><subject>myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myopathies, Structural, Congenital - genetics</subject><subject>Myopathies, Structural, Congenital - metabolism</subject><subject>Myopathies, Structural, Congenital - pathology</subject><subject>Myopathy</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - genetics</subject><subject>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</subject><subject>sequence analysis</subject><subject>Skeletal muscle</subject><subject>Structural integrity</subject><subject>Structure-function relationships</subject><subject>Therapeutic targets</subject><subject>therapeutics</subject><subject>Transcriptomics</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFP3DAQha2qqFDgD_RQReqll4DHjp34VFWoLUhIcACJm-U4s7tGiZ3aCdL-e7zdhZYeECePNN88z5tHyCegJ0BpfZoopdCUlFUlFQJYqd6RA6gYLRWt4f2ulg272ycfU7rPtGiY_ED2uZJMCC4PyM11mNBPzvSFDcOIPpkpxHUxoF0Z79KQijFiwvjg_LKwJnbO2GIxezu54Avni2EdprmdexM35Wim1fqI7C1Mn_B49x6S258_bs7Oy8urXxdn3y9Lyxs1lVahaQTldUdbBGyUlG3XYtU10NWcq1aoBVcouDI1F5VBgLbGDSdEW2HFD8m3re44twN2NhuJptdjdIOJax2M0y873q30MjxoAAkC5Ebh604hht8zpkkPLlnse-MxzElzEFW-lGJvQSuqmGDAMvrlP_Q-zNHnU2QqW1dAZZ0ptqVsDClFXDwvDlRvAtbbgHUOWP8JWKs89Plfy88jT4lmgG-BlFt-ifHv36_IPgKCHrKq</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Simon, Alix</creator><creator>Diedhiou, Nadège</creator><creator>Reiss, David</creator><creator>Goret, Marie</creator><creator>Grandgirard, Erwan</creator><creator>Laporte, Jocelyn</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8256-5862</orcidid></search><sort><creationdate>20241201</creationdate><title>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</title><author>Simon, Alix ; Diedhiou, Nadège ; Reiss, David ; Goret, Marie ; Grandgirard, Erwan ; Laporte, Jocelyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c9ea85037d0be1e8966bdbe4d81d7339b59f39e539a7354ae11b7ee89655b4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesion</topic><topic>Adhesive strength</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cardiac function</topic><topic>Cardiac muscle</topic><topic>cardiac output</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Biology</topic><topic>Cellular structure</topic><topic>Coronary artery disease</topic><topic>Defects</topic><topic>Disease Models, Animal</topic><topic>Dynamin</topic><topic>Dynamin II - genetics</topic><topic>Dynamin II - metabolism</topic><topic>dynamins</topic><topic>Gene sequencing</topic><topic>Heart diseases</topic><topic>Hepatocytes</topic><topic>In vivo methods and tests</topic><topic>inflammation</topic><topic>integrins</topic><topic>Life expectancy</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver diseases</topic><topic>liver function</topic><topic>longevity</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>muscle development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>muscular diseases</topic><topic>Musculoskeletal system</topic><topic>myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myopathies, Structural, Congenital - genetics</topic><topic>Myopathies, Structural, Congenital - metabolism</topic><topic>Myopathies, Structural, Congenital - pathology</topic><topic>Myopathy</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - genetics</topic><topic>Protein Tyrosine Phosphatases, Non-Receptor - metabolism</topic><topic>sequence analysis</topic><topic>Skeletal muscle</topic><topic>Structural integrity</topic><topic>Structure-function relationships</topic><topic>Therapeutic targets</topic><topic>therapeutics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Alix</creatorcontrib><creatorcontrib>Diedhiou, Nadège</creatorcontrib><creatorcontrib>Reiss, David</creatorcontrib><creatorcontrib>Goret, Marie</creatorcontrib><creatorcontrib>Grandgirard, Erwan</creatorcontrib><creatorcontrib>Laporte, Jocelyn</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Alix</au><au>Diedhiou, Nadège</au><au>Reiss, David</au><au>Goret, Marie</au><au>Grandgirard, Erwan</au><au>Laporte, Jocelyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential compensatory mechanisms preserving cardiac function in myotubular myopathy</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>476</spage><epage>476</epage><pages>476-476</pages><artnum>476</artnum><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the
Mtm1
−/y
mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3
P
and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39625536</pmid><doi>10.1007/s00018-024-05512-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8256-5862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.476-476, Article 476 |
issn | 1420-682X 1420-9071 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11615164 |
source | MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | Adhesion Adhesive strength Animals Biochemistry Biomarkers Biomedical and Life Sciences Biomedicine Cardiac function Cardiac muscle cardiac output Cell adhesion Cell adhesion & migration Cell Adhesion - genetics Cell Biology Cellular structure Coronary artery disease Defects Disease Models, Animal Dynamin Dynamin II - genetics Dynamin II - metabolism dynamins Gene sequencing Heart diseases Hepatocytes In vivo methods and tests inflammation integrins Life expectancy Life Sciences Life span Liver Liver - metabolism Liver - pathology Liver diseases liver function longevity Male Mice Mice, Inbred C57BL mitochondria muscle development Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscles muscular diseases Musculoskeletal system myocardium Myocardium - metabolism Myocardium - pathology Myopathies, Structural, Congenital - genetics Myopathies, Structural, Congenital - metabolism Myopathies, Structural, Congenital - pathology Myopathy Original Original Article Oxidative phosphorylation Phenotypes Phosphorylation Protein Tyrosine Phosphatases, Non-Receptor - genetics Protein Tyrosine Phosphatases, Non-Receptor - metabolism sequence analysis Skeletal muscle Structural integrity Structure-function relationships Therapeutic targets therapeutics Transcriptomics |
title | Potential compensatory mechanisms preserving cardiac function in myotubular myopathy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20compensatory%20mechanisms%20preserving%20cardiac%20function%20in%20myotubular%20myopathy&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Simon,%20Alix&rft.date=2024-12-01&rft.volume=81&rft.issue=1&rft.spage=476&rft.epage=476&rft.pages=476-476&rft.artnum=476&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05512-9&rft_dat=%3Cproquest_pubme%3E3140925212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138991067&rft_id=info:pmid/39625536&rfr_iscdi=true |