Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis

Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain‐like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2024-12, Vol.25 (23), p.e202400265-n/a
Hauptverfasser: Bisquert, Juan, Sánchez‐Mateu, Marc, Bou, Agustín, Suwen Law, Cheryl, Santos, Abel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e202400265
container_title Chemphyschem
container_volume 25
creator Bisquert, Juan
Sánchez‐Mateu, Marc
Bou, Agustín
Suwen Law, Cheryl
Santos, Abel
description Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain‐like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind‐hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties. The performance of fluidic networks for brain‐like computation applications depends on short term memory properties of the rectifying elements. We show the connection of synaptical property of nanofluidic pores to the hysteresis behaviour. Potentiation and depression are connected to intrinsic inductive and capacitive behaviours caused by the impeded ion conduction mechanism.
doi_str_mv 10.1002/cphc.202400265
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11614370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138426311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3145-f22e753340949a939b5981a9bf4053a1c54eb53759b2623ccf2be322b8e5c6123</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxS20iC6FK8dVpL1wafH4I6m5IBRRilTBCgpXy3En1KvUzsYJq_73OLQUlgsnz3h-fnrjR8gLoHOglL2y7c7OGWUiNbl8RC5BcDUrcgEXp1owLifkaYy3lNIFLeAJmXAFoJRil-Tbl4M3be9s9hljG3zELNTZshncNt19ND60ocP4OtvsMCuD92h7F_wI3YQefe_Mr_7e9btsdYg9JtrFZ-RxbZqIz0_nlHxdvtuUq9n60_sP5dv1zHIQclYzhoXkXFAllFFcVVItwKiqFlRyA1YKrCQvpKpYzri1NauQM1YtUNocGJ-SN0fddqj2uLXJUGca3XZub7qDDsbphxPvdvp7-KEB8vQ7BU0KL08KXbgbMPZ676LFpjEewxA1p2o0V7ARvf4HvQ1D59N-mgNfCJZzgETNj5TtQowd1mc3QPWYmR4z0-fM0oOrv3c4479DSoA6AveuwcN_5HR5syr_iP8ECKujIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138426311</pqid></control><display><type>article</type><title>Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bisquert, Juan ; Sánchez‐Mateu, Marc ; Bou, Agustín ; Suwen Law, Cheryl ; Santos, Abel</creator><creatorcontrib>Bisquert, Juan ; Sánchez‐Mateu, Marc ; Bou, Agustín ; Suwen Law, Cheryl ; Santos, Abel</creatorcontrib><description>Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain‐like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind‐hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties. The performance of fluidic networks for brain‐like computation applications depends on short term memory properties of the rectifying elements. We show the connection of synaptical property of nanofluidic pores to the hysteresis behaviour. Potentiation and depression are connected to intrinsic inductive and capacitive behaviours caused by the impeded ion conduction mechanism.</description><identifier>ISSN: 1439-4235</identifier><identifier>ISSN: 1439-7641</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202400265</identifier><identifier>PMID: 39119992</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Electronic components ; Hysteresis loops ; Membranes ; Modulation ; Relaxation time ; Transient analysis</subject><ispartof>Chemphyschem, 2024-12, Vol.25 (23), p.e202400265-n/a</ispartof><rights>2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH</rights><rights>2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3145-f22e753340949a939b5981a9bf4053a1c54eb53759b2623ccf2be322b8e5c6123</cites><orcidid>0000-0003-4987-4887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.202400265$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.202400265$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bisquert, Juan</creatorcontrib><creatorcontrib>Sánchez‐Mateu, Marc</creatorcontrib><creatorcontrib>Bou, Agustín</creatorcontrib><creatorcontrib>Suwen Law, Cheryl</creatorcontrib><creatorcontrib>Santos, Abel</creatorcontrib><title>Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain‐like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind‐hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties. The performance of fluidic networks for brain‐like computation applications depends on short term memory properties of the rectifying elements. We show the connection of synaptical property of nanofluidic pores to the hysteresis behaviour. Potentiation and depression are connected to intrinsic inductive and capacitive behaviours caused by the impeded ion conduction mechanism.</description><subject>Electronic components</subject><subject>Hysteresis loops</subject><subject>Membranes</subject><subject>Modulation</subject><subject>Relaxation time</subject><subject>Transient analysis</subject><issn>1439-4235</issn><issn>1439-7641</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc2P0zAQxS20iC6FK8dVpL1wafH4I6m5IBRRilTBCgpXy3En1KvUzsYJq_73OLQUlgsnz3h-fnrjR8gLoHOglL2y7c7OGWUiNbl8RC5BcDUrcgEXp1owLifkaYy3lNIFLeAJmXAFoJRil-Tbl4M3be9s9hljG3zELNTZshncNt19ND60ocP4OtvsMCuD92h7F_wI3YQefe_Mr_7e9btsdYg9JtrFZ-RxbZqIz0_nlHxdvtuUq9n60_sP5dv1zHIQclYzhoXkXFAllFFcVVItwKiqFlRyA1YKrCQvpKpYzri1NauQM1YtUNocGJ-SN0fddqj2uLXJUGca3XZub7qDDsbphxPvdvp7-KEB8vQ7BU0KL08KXbgbMPZ676LFpjEewxA1p2o0V7ARvf4HvQ1D59N-mgNfCJZzgETNj5TtQowd1mc3QPWYmR4z0-fM0oOrv3c4479DSoA6AveuwcN_5HR5syr_iP8ECKujIA</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Bisquert, Juan</creator><creator>Sánchez‐Mateu, Marc</creator><creator>Bou, Agustín</creator><creator>Suwen Law, Cheryl</creator><creator>Santos, Abel</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4987-4887</orcidid></search><sort><creationdate>20241202</creationdate><title>Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis</title><author>Bisquert, Juan ; Sánchez‐Mateu, Marc ; Bou, Agustín ; Suwen Law, Cheryl ; Santos, Abel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3145-f22e753340949a939b5981a9bf4053a1c54eb53759b2623ccf2be322b8e5c6123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electronic components</topic><topic>Hysteresis loops</topic><topic>Membranes</topic><topic>Modulation</topic><topic>Relaxation time</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bisquert, Juan</creatorcontrib><creatorcontrib>Sánchez‐Mateu, Marc</creatorcontrib><creatorcontrib>Bou, Agustín</creatorcontrib><creatorcontrib>Suwen Law, Cheryl</creatorcontrib><creatorcontrib>Santos, Abel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bisquert, Juan</au><au>Sánchez‐Mateu, Marc</au><au>Bou, Agustín</au><au>Suwen Law, Cheryl</au><au>Santos, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2024-12-02</date><risdate>2024</risdate><volume>25</volume><issue>23</issue><spage>e202400265</spage><epage>n/a</epage><pages>e202400265-n/a</pages><issn>1439-4235</issn><issn>1439-7641</issn><eissn>1439-7641</eissn><abstract>Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain‐like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind‐hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties. The performance of fluidic networks for brain‐like computation applications depends on short term memory properties of the rectifying elements. We show the connection of synaptical property of nanofluidic pores to the hysteresis behaviour. Potentiation and depression are connected to intrinsic inductive and capacitive behaviours caused by the impeded ion conduction mechanism.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39119992</pmid><doi>10.1002/cphc.202400265</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4987-4887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2024-12, Vol.25 (23), p.e202400265-n/a
issn 1439-4235
1439-7641
1439-7641
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11614370
source Wiley Online Library Journals Frontfile Complete
subjects Electronic components
Hysteresis loops
Membranes
Modulation
Relaxation time
Transient analysis
title Synaptic Response of Fluidic Nanopores: The Connection of Potentiation with Hysteresis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Response%20of%20Fluidic%20Nanopores:%20The%20Connection%20of%20Potentiation%20with%20Hysteresis&rft.jtitle=Chemphyschem&rft.au=Bisquert,%20Juan&rft.date=2024-12-02&rft.volume=25&rft.issue=23&rft.spage=e202400265&rft.epage=n/a&rft.pages=e202400265-n/a&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202400265&rft_dat=%3Cproquest_pubme%3E3138426311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138426311&rft_id=info:pmid/39119992&rfr_iscdi=true